华佗养生网
您的当前位置:首页幂的运算练习题及答案

幂的运算练习题及答案

来源:华佗养生网
《幂的运算》提高练习题

一、选择题

1、计算(﹣2)100+(﹣2)99所得的结果是( ) A、﹣299 B、﹣2 C、299 D、2 2、当m是正整数时,下列等式成立的有( ) (1)a2m=(am)2;(2)a2m=(a2)m;(3)a2m=(﹣am)2; (4)a2m=(﹣a2)m.

A、4个 B、3个 C、2个 D、1个 3、下列运算正确的是( )

A、2x+3y=5xy B、(﹣3x2y)3=﹣9x6y3 C、

D、(x﹣y)3=x3﹣y3

4、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是( )

A、an与bn B、a2n与b2n C、a2n+1与b2n+1 D、a2n﹣1与﹣b2n﹣1 5、下列等式中正确的个数是( )

①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26. A、0个 B、1个 C、2个 D、3个 二、填空题

6、计算:x2•x3= _________ ;(﹣a2)3+(﹣a3)2= _________ . 7、若2m=5,2n=6,则2m+2n= _________ . 三、解答题

8、已知3x(xn+5)=3xn+1+45,求x的值。

9、若1+2+3+…+n=a,

求代数式(xny)(xn﹣1y2)(xn﹣2y3)…(x2yn﹣1)

10、已知2x+5y=3,求4x•32y的值.

11、已知25m•2•10n=57•24,求m、n.

12、已知ax=5,ax+y=25,求ax+ay的值.

2 / 21

xyn)的值.(

13、若xm+2n=16,xn=2,求xm+n的值.

14、比较下列一组数的大小.8131,2741,961

15、如果a2+a=0(a≠0),求a2005+a2004+12的值.

16、已知9n+1﹣32n=72,求n的值.

18、若(anbmb)3=a9b15,求2m+n的值.

3 / 21

19、计算:an﹣5(an+1b3m﹣2)2+(an﹣1bm﹣2)3(﹣b3m+2)

20、若x=3an,y=﹣

21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.

22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)5

,当a=2,n=3时,求anx﹣ay的值.

23、若(am+1bn+2)(a2n﹣1b2n)=a5b3,则求m+n的值.

24、用简便方法计算: (1)(2)2×42

4 / 21

(2)(﹣0.25)12×412

(3)0.52×25×0.125

(4)[()2]3×(23)35 / 21

6 / 21

答案与评分标准

一、选择题(共5小题,每小题4分,满分20分) 1、计算(﹣2)100+(﹣2)99所得的结果是( ) A、﹣299 B、﹣2 C、299 D、2 考点:有理数的乘方。

分析:本题考查有理数的乘方运算,(﹣2)100表示100个(﹣2)的乘积,所以(﹣2)100=(﹣2)99×(﹣2).

解答:解:(﹣2)100+(﹣2)99=(﹣2)99[(﹣2)+1]=299. 故选C.

点评:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.

负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.

2、当m是正整数时,下列等式成立的有( )

(1)a2m=(am)2;(2)a2m=(a2)m;(3)a2m=(﹣am)2;(4)a2m=(﹣a2)m. A、4个 B、3个 C、2个 D、1个 考点:幂的乘方与积的乘方。

分析:根据幂的乘方的运算法则计算即可,同时要注意m的奇偶性. 解答:解:根据幂的乘方的运算法则可判断(1)(2)都正确; 因为负数的偶数次方是正数,所以(3)a2m=(﹣am)2正确;

7 / 21

(4)a2m=(﹣a2)m只有m为偶数时才正确,当m为奇数时不正确; 所以(1)(2)(3)正确. 故选B.

点评:本题主要考查幂的乘方的性质,需要注意负数的奇数次幂是负数,偶数次幂是正数.

3、下列运算正确的是( )

A、2x+3y=5xy B、(﹣3x2y)3=﹣9x6y3 C、

D、(x﹣y)3=x3﹣y3

考点:单项式乘单项式;幂的乘方与积的乘方;多项式乘多项式。

分析:根据幂的乘方与积的乘方、合并同类项的运算法则进行逐一计算即可. 解答:解:A、2x与3y不是同类项,不能合并,故本选项错误; B、应为(﹣3x2y)3=﹣27x6y3,故本选项错误; C、

,正确;

D、应为(x﹣y)3=x3﹣3x2y+3xy2﹣y3,故本选项错误. 故选C.

点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项,积的乘方、单项式的乘法,需要熟练掌握性质和法则;

(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.

4、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是( )

8 / 21

A、an与bn B、a2n与b2n C、a2n+1与b2n+1 D、a2n﹣1与﹣b2n﹣1 考点:有理数的乘方;相反数。

分析:两数互为相反数,和为0,所以a+b=0.本题只要把选项中的两个数相加,看和是否为0,若为0,则两数必定互为相反数. 解答:解:依题意,得a+b=0,即a=﹣b.

A中,n为奇数,an+bn=0;n为偶数,an+bn=2an,错误; B中,a2n+b2n=2a2n,错误; C中,a2n+1+b2n+1=0,正确; D中,a2n﹣1﹣b2n﹣1=2a2n﹣1,错误. 故选C.

点评:本题考查了相反数的定义及乘方的运算性质. 注意:一对相反数的偶次幂相等,奇次幂互为相反数. 5、下列等式中正确的个数是( )

①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26. A、0个 B、1个 C、2个 D、3个

考点:幂的乘方与积的乘方;整式的加减;同底数幂的乘法。

分析:①利用合并同类项来做;②③都是利用同底数幂的乘法公式做(注意一个负数的偶次幂是正数,奇次幂是负数);④利用乘法分配律的逆运算. 解答:解:①∵a5+a5=2a5;,故①的答案不正确;

②∵(﹣a)6•(﹣a)3=(﹣a)9=﹣a9,故②的答案不正确;

9 / 21

③∵﹣a4•(﹣a)5=a9;,故③的答案不正确; ④25+25=2×25=26. 所以正确的个数是1, 故选B.

点评:本题主要利用了合并同类项、同底数幂的乘法、乘法分配律的知识,注意指数的变化.

二、填空题(共2小题,每小题5分,满分10分) 6、计算:x2•x3= x5 ;(﹣a2)3+(﹣a3)2= 0 . 考点:幂的乘方与积的乘方;同底数幂的乘法。

分析:第一小题根据同底数幂的乘法法则计算即可;第二小题利用幂的乘方公式即可解决问题. 解答:解:x2•x3=x5;

(﹣a2)3+(﹣a3)2=﹣a6+a6=0.

点评:此题主要考查了同底数幂的乘法和幂的乘方法则,利用两个法则容易求出结果.

7、若2m=5,2n=6,则2m+2n= 180 . 考点:幂的乘方与积的乘方。

分析:先逆用同底数幂的乘法法则把2m+2n=化成2m•2n•2n的形式,再把2m=5,2n=6代入计算即可.

解答:解:∴2m=5,2n=6, ∴2m+2n=2m•(2n)2=5×62=180.

10 / 21

点评:本题考查的是同底数幂的乘法法则的逆运算,比较简单. 三、解答题(共17小题,满分0分) 8、已知3x(xn+5)=3xn+1+45,求x的值. 考点:同底数幂的乘法。 专题:计算题。

分析:先化简,再按同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即am•an=am+n计算即可. 解答:解:3x1+n+15x=3xn+1+45, ∴15x=45, ∴x=3.

点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键. 9、若1+2+3+…+n=a,求代数式(xny)(xn﹣1y2)(xn﹣2y3)…(x2yn﹣1)(xyn)的值. 考点:同底数幂的乘法。 专题:计算题。

分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即am•an=am+n计算即可.

解答:解:原式=xny•xn﹣1y2•xn﹣2y3…x2yn﹣1•xyn

=(xn•xn﹣1•xn﹣2•…•x2•x)•(y•y2•y3•…•yn﹣1•yn) =xaya.

点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键. 10、已知2x+5y=3,求4x•32y的值.

考点:幂的乘方与积的乘方;同底数幂的乘法。

11 / 21

分析:根据同底数幂相乘和幂的乘方的逆运算计算. 解答:解:∵2x+5y=3, ∴4x•32y=22x•25y=22x+5y=23=8.

点评:本题考查了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘的性质,整体代入求解也比较关键. 11、已知25m•2•10n=57•24,求m、n. 考点:幂的乘方与积的乘方;同底数幂的乘法。 专题:计算题。

分析:先把原式化简成5的指数幂和2的指数幂,然后利用等量关系列出方程组,在求解即可.

解答:解:原式=52m•2•2n•5n=52m+n•21+n=57•24, ∴

解得m=2,n=3.

点评:本题考查了幂的乘方和积的乘方,熟练掌握运算性质和法则是解题的关键. 12、已知ax=5,ax+y=25,求ax+ay的值. 考点:同底数幂的乘法。 专题:计算题。

分析:由ax+y=25,得ax•ay=25,从而求得ay,相加即可. 解答:解:∵ax+y=25,∴ax•ay=25, ∵ax=5,∴ay,=5, ∴ax+ay=5+5=10.

12 / 21

点评:本题考查同底数幂的乘法的性质,熟练掌握性质的逆用是解题的关键. 13、若xm+2n=16,xn=2,求xm+n的值. 考点:同底数幂的除法。 专题:计算题。

分析:根据同底数幂的除法,底数不变指数相减得出xm+2n÷xn=xm+n=16÷2=8. 解答:解:xm+2n÷xn=xm+n=16÷2=8, ∴xm+n的值为8.

点评:本题考查同底数幂的除法法则,底数不变指数相减,一定要记准法则才能做题.

14、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式 10α+β+γ . 考点:同底数幂的乘法。

分析:把105进行分解因数,转化为3和5和7的积的形式,然后用10a、10β、10γ表示出来.

解答:解:105=3×5×7,而3=10a,5=10β,7γ=10, ∴105=10γ•10β•10α=10α+β+γ; 故应填10α+β+γ.

点评:正确利用分解因数,根据同底数的幂的乘法的运算性质的逆用是解题的关键.

15、比较下列一组数的大小.8131,2741,961 考点:幂的乘方与积的乘方。 专题:计算题。

分析:先对这三个数变形,都化成底数是3的幂的形式,再比较大小.

13 / 21

解答:解:∵8131=(34)31=3124; 2741=(33)41=3123; 961=(32)61=3122; ∴8131>2741>961.

点评:本题利用了幂的乘方的计算,注意指数的变化.(底数是正整数,指数越大幂就越大)

16、如果a2+a=0(a≠0),求a2005+a2004+12的值. 考点:因式分解的应用;代数式求值。 专题:因式分解。

分析:观察a2+a=0(a≠0),求a2005+a2004+12的值.只要将a2005+a2004+12转化为因式中含有a2+a的形式,又因为a2005+a2004+12=a2003(a2+a)+12,因而将a2+a=0代入即可求出值.

解答:解:原式=a2003(a2+a)+12=a2003×0+12=12

点评:本题考查因式分解的应用、代数式的求值.解决本题的关键是a2005+a2004将提取公因式转化为a2003(a2+a),至此问题的得解. 17、已知9n+1﹣32n=72,求n的值. 考点:幂的乘方与积的乘方。

分析:由于72=9×8,而9n+1﹣32n=9n×8,所以9n=9,从而得出n的值. 解答:解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8, ∴当9n+1﹣32n=72时,9n×8=9×8, ∴9n=9, ∴n=1.

14 / 21

点评:主要考查了幂的乘方的性质以及代数式的恒等变形.本题能够根据已知条件,结合72=9×8,将9n+1﹣32n变形为9n×8,是解决问题的关键. 18、若(anbmb)3=a9b15,求2m+n的值. 考点:幂的乘方与积的乘方。

分析:根据(anbmb)3=a9b15,比较相同字母的指数可知,3n=9,3m+3=15,先求m、n,再求2m+n的值.

解答:解:∵(anbmb)3=(an)3(bm)3b3=a3nb3m+3, ∴3n=9,3m+3=15, 解得:m=4,n=3, ∴2m+n=27=128.

点评:本题考查了积的乘方的性质和幂的乘方的性质,根据相同字母的次数相同列式是解题的关键.

19、计算:an﹣5(an+1b3m﹣2)2+(an﹣1bm﹣2)3(﹣b3m+2) 考点:幂的乘方与积的乘方;同底数幂的乘法。

分析:先利用积的乘方,去掉括号,再利用同底数幂的乘法计算,最后合并同类项即可.

解答:解:原式=an﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2), =a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4), =a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4, =0.

点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.

15 / 21

20、若x=3an,y=﹣考点:同底数幂的乘法。 分析:把x=3an,y=﹣结果.

解答:解:anx﹣ay =an×3an﹣a×(﹣=3a2n+a2n∵a=2,n=3,

,当a=2,n=3时,求anx﹣ay的值.

,代入anx﹣ay,利用同底数幂的乘法法则,求出

∴3a2n+a2n=3×26+×26=224.

点评:本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键. 21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值. 考点:幂的乘方与积的乘方。

分析:先都转化为同指数的幂,根据指数相等列出方程,解方程求出x、y的值,然后代入x﹣y计算即可. 解答:解:∵2x=4y+1, ∴2x=22y+2, ∴x=2y+2 ① 又∵27x=3x﹣1, ∴33y=3x﹣1, ∴3y=x﹣1②

16 / 21

联立①②组成方程组并求解得∴x﹣y=3.

点评:本题主要考查幂的乘方的性质的逆用:amn=(am)n(a≠0,m,n为正整数),根据指数相等列出方程是解题的关键.

22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)5 考点:同底数幂的乘法。

分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即am•an=am+n计算即可.

解答:解:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)5, =(a﹣b)m+3•(a﹣b)2•(a﹣b)m•[﹣(a﹣b)5], =﹣(a﹣b)2m+10.

点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键. 23、若(am+1bn+2)(a2n﹣1b2n)=a5b3,则求m+n的值. 考点:同底数幂的乘法。 专题:计算题。

分析:首先合并同类项,根据同底数幂相乘,底数不变,指数相加的法则即可得出答案.

解答:解:(am+1bn+2)(a2n﹣1b2n)=am+1×a2n﹣1×bn+2×b2n =am+1+2n﹣1×bn+2+2n =am+2nb3n+2=a5b3.

∴m+2n=5,3n+2=3,解得:n=,m=,

17 / 21

m+n=.

点评:本题考查了同底数幂的乘法,难度不大,关键是掌握同底数幂相乘,底数不变,指数相加. 24、用简便方法计算: (1)(2)2×42 (2)(﹣0.25)12×412 (3)0.52×25×0.125 (4)[()2]3×(23)3

考点:幂的乘方与积的乘方;同底数幂的乘法。 专题:计算题。

分析:根据幂的乘方法则:底数不变指数相乘,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘去做. 解答:解:(1)原式=×42=92=81; (2)原式=(﹣)12×412=

×412=1;

(3)原式=()2×25×=; (4)原式=()3×83=(×8)3=8.

点评:本题考查幂的乘方,底数不变指数相乘,以及积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.

18 / 21

考试中答题策略和几个答题窍门

对于中学生来说,最终都要参加升学考试,而考试的遗憾莫过于实有的水平未能充分发挥出来,致使十几年的辛劳毁于两小时的“经验”不足。无论是中考还是高考,考的都是心理素质和考试技术的较量。当一个考生进入封闭考场之后,他的知识和能力就是一个常数,而如何将所掌握的知识转化为阅卷得分点,这就取决于稳定的心态和答题的技术了。

答题得分到底有什么技巧,这也许是所有中学生们关心的问题。关于这一点,也许中考状元们能给我们答案。经过中考实战,中考状元们都展现出他们本身所具有的良好心态、踏实的知识基础和应试技巧。下面是他们在备考应试阶段总结出的“四先四后”应试技巧。 1.先易后难

顾名思义,就是在做题的时候,先做那些简单的题目,然后再做困难的题目,先做A类题,再攻B类题。当然,容易和困难是因人而异的,“难者不会,会者不难”,虽然试卷本身的编排已经在原则上考虑到从易到难,但这仅仅是命题组的主观认识,而且数学试卷常常被设计为“两个从易到难的三个小高潮”(三类题型——选择题、填空题、解答题——从易到难;每类题型本身又从易到难),就是说,选择题的难题完全可能比填空题的易题困难,而解答题的易题又完全可能比选择、填空的难题容易。

所以,进入第二遍答题时,就无须拘泥于从前到后的自然顺序,可根据自己的实际,跳过啃不动的题目,从易到难(被跳过的题目其实还在潜意识里继续思考),特别是不能在低分值的题目上耽误过长时间,防止“前面难题久攻不下,后面易题无暇顾及”。

19 / 21

2.先熟后生

先做那些内容掌握比较到位、题型结构比较熟悉的题目

后攻那些题型、内容,甚至语言都比较陌生的题目。先做在某些方面有熟悉感的题目,容易产生精神亢奋,会使人情不自禁地进入境界,展开联想,促进转化,拾级登高。 3.先高后低

这是说要优先处理高分题(解答题),特别是在考试的后半段时间,更要注意解题的时间效益,比如:

(1)两道都会做的题目,应先做高分题,后做低分题,以减少时间不足的失分。 (2)到了最后一二十分钟,也应对那些拿不下来的题目先就高分题实施“分段得分”,以增加在时间不足的前提下的得分。事实证明,“大题拿小分”是一个好主意。

当然,“先高后低”要与“先易后难”结合起来,不能不分难易,专挑高分题做,否则会造成“高分难题做不出来,低分易题没时间做”。 4.先同后异

就是说,可考虑同学科、同类型的题目集中处理(如同为函数题,同为方程题,同为不等式题,同为数列题,同为三角函数题,同为立体几何题,同为解析几何题,同为概率统计题,同为微积分题等),这些题目常常用到同样的数学思想、类似的思考方法,甚至同一数学公式,把它们结合起来一起处理,思考比较集中,方法或知识的沟通比较容易,有利于提高单位时间的效益。

一般说来,数学中考解题必须进行“兴奋灶”的转移,思维活动必须进行代数学科与几何学科的相互换位,兴奋中心必须从这一章节跳跃到另一章节,但“先同

20 / 21

后异”可以避免兴奋中心转移得过急、过陡和过频。

当然,在做到以上几点之外,最重要的是你要坚持到最后分钟,忌好胜心理。时间就是胜利,珍惜一分钟,有可能减少你一分甚至几分的失误。

答完试题后,要认真检查,反复核对,切忌为出风头而草率交卷。要恪守“不到最后一分钟绝不停笔”的良训。

成绩,想真正获得知识,就必须要重视记忆的作用。

21 / 21

因篇幅问题不能全部显示,请点此查看更多更全内容