华佗养生网
您的当前位置:首页Modulation of intestinal barrier by intestinal microbiota

Modulation of intestinal barrier by intestinal microbiota

来源:华佗养生网
PharmacologicalResearch69 (2013) 42–51

ContentslistsavailableatSciVerseScienceDirect

PharmacologicalResearch

journalhomepage:www.elsevier.com/locate/yphrs

Invitedreview

Modulationofintestinalbarrierbyintestinalmicrobiota:Pathologicalandtherapeuticimplications

JaneM.M.Natividad,ElenaF.Verdu∗

FarncombeFamilyDigestiveHealthResearchInstitute,McMasterUniversity,Hamilton,Canada

article

info

abstract

Articlehistory:

Received12July2012

Receivedinrevisedform11October2012Accepted13October2012

Keywords:

IntestinalbarrierfunctionIntestinalmicrobiotaCellrenewal

ApicaljunctionalproteinsAntimicrobialsMucin

Mammalsandtheirintestinalmicrobiotapeacefullycoexistinamutualisticrelationship.Commensalbacteriaplayanactiveroleinshapingandmodulatingphysiologicalprocessesinthehost,whichinclude,butarenotrestrictedto,theimmunesystemandtheintestinalbarrier.Bothplayacrucialroleincon-tainingintestinalbacteriaandotherpotentiallynoxiousluminalantigenswithinthelumenandmucosalcompartment.Althoughmutualismdefinestherelationshipbetweenthehostandtheintestinalmicro-biota,disruptionsinthisequilibriummaypromotedisease.Thus,alterationsingutmicrobiota(dysbiosis)havebeenlinkedtotherecentincreasedexpressionofobesity,allergy,autoimmunity,functionalandinflammatorydisorderssuchasirritablebowelsyndrome(IBS)andinflammatoryboweldisease(IBD).Inthisarticle,wereviewtheevidencesupportingaroleofgutmicrobiotainregulatingintestinalbarrierfunction.Wediscussthehypothesisthatmicrobialfactorscanmodulatethebarrierinwaysthatcanpre-ventorpromotegastrointestinaldisease.Abetterunderstandingoftheroleoftheintestinalmicrobiotainmaintainingafunctionalintestinalbarriermayhelpdeveloptargetedstrategiestopreventandtreatdisease.

Crown Copyright © 2012 Published by Elsevier Ltd. All rights reserved.

Contents1.

2.

3.

Intestinalmicrobiotaandintestinalbarrier:importantdeterminantsofhost’shomeostasis......................................................1.1.Intestinalepithelialcelltypes,guthomeostasisandinflammation.........................................................................1.2.Intestinalbarrierarchitecture,guthomeostasisandinflammation.........................................................................1.3.Antimicrobialpeptides,guthomeostasisandinflammation................................................................................1.4.Mucuslayer,guthomeostasisandinflammation............................................................................................1.5.Microbialrecognition,guthomeostasisandinflammation..................................................................................Regulationoftheintestinalbarrierbygutmicrobiota..............................................................................................2.1.Microbialeffectsonintestinalepithelialcellrenewal.......................................................................................2.2.Microbialeffectsonintestinalpermeability.................................................................................................2.3.Microbialeffectsonantimicrobialproteinexpression......................................................................................2.4.Microbialeffectsonmucuslayer.............................................................................................................Conclusion............................................................................................................................................References...........................................................................................................................................

424344454748484949

1.Intestinalmicrobiotaandintestinalbarrier:importantdeterminantsofhost’shomeostasis

residentbacteriainthegastrointesti-Therearemorethan

naltractthatestablishalife-long,bi-directionalandsymbiotic

1014

∗Correspondingauthorat:FarncombeFamilyDigestiveHealthResearchInstitute,McMasterUniversity,1280MainStreetWest,Room3N8,Hamilton,Ontario,CanadaL8N3Z5.Tel.:+19055259140x20051;fax:+19055223454.

E-mailaddress:verdue@mcmaster.ca(E.F.Verdu).

relationshipwithourcells[1].Thisecosystem,termedcollectivelytheintestinalmicrobiota,playsakeyroleinthematurationoftheimmunesystemandinotherphysiologicalprocessesinclud-ingneuro-motorandintestinalbarrierfunction[2,3].Conversely,alterationsingutcolonizationatthetimeofbirthordisturbancesofthiscomplexecosysteminadulthoodmayresultinallergyandinflammation[4].

Thehosthasevolvedwithimmuneandphysiologicaladapta-tionstomaintainconstantvigilanceagainstpotentiallyharmfulluminalantigenswhilepreventingthedevelopmentofuncon-trolledinflammation.Assuch,theintestinalbarrierprovidesthe

1043-6618/$–seefrontmatter.Crown Copyright © 2012 Published by Elsevier Ltd. All rights reserved.http://dx.doi.org/10.1016/j.phrs.2012.10.007

J.M.M.Natividad,E.F.Verdu/PharmacologicalResearch69 (2013) 42–51

43

Fig.1.Intestinalbarrierasmodulatorofintestinalhomeostasis.Theintestinalbarrierisequippedwithseverallevelsofdefensemechanismstolimitluminalantigentranslocation.Thisincludesasinglelayerofsemi-permeableepithelialcells,apicaljunctions(adherensandtightjunctionsproteins)thatbindepithelialcellstogetherandregulateparacellularantigenandmoleculeentryacrosstheepithelium.Intestinalepithelialcellstransportantigensandmoleculesfromthelumenintothemucosathroughthetranscellularpathway.SpecializedepithelialcellscalledM-cellsmediateconstantsamplingofluminalantigens.Gobletcells,Panethcellsandenterocytessecretemucinsandantimicrobialpeptidesthatassembleintoamucuslayer.Mucinsandantimicrobialsarelocalizedwithintheunstirredmucuslayer.IntestinalepithelialcellssecreteIgA,whichareproducedbyplasmacellsinthelaminapropria.Intestinalepithelialcellsarealsoequippedwithanumberofmicrobialrecognitionreceptors(MRR)suchasTLRandNOD-likereceptorsthatcanrecognizespecificmicrobialassociatedmolecularpatterns.(MAMP).Basalrecognitionofintestinalmicroorganismsbyintestinalepithelialcellsinducessecretionofcytokinesandotherimmunemediators,whichmayhelpintheinductionaregulatoryresponseagainstintestinalmicrobiotaandmaintenanceofintestinalhomeostasis.

firstlineofdefense,byphysicallyseparatingtheinternalmilieufromthegutlumenandthroughactivemechanismssuchasmicro-bialrecognition,productionofantimicrobialpeptides,mucus,andsecretionofantibodies(Fig.1).

Regulationofbarrierintegrityandfunctionismediatedbyendogenousandexogenousfactors,suchascytokines,chemicalsanddrugs[5–9].Pathogensandtheirtoxinsalsohavetheabilitytodirectlyorindirectlymodulatetheintestinalbarrier[10–12].Recently,commensalbacteriahavebeenproposedaskeymodula-torsofintestinalbarrierfunction[13,2].

Adefectinintestinalbarriercanleadtopersistentimmuneacti-vation.Indeed,intestinalbarrierdysfunctionhasbeensuggestedtoplayapathogenicroleinanumberofintestinaldiseasesinclud-ingceliacdisease(CD),colorectalcancer,irritablebowelsyndrome(IBS)andinflammatoryboweldisease(IBD)[14].Althoughtheexactroleofintestinalbarrierdysfunction,particularlyinthecon-textofIBDpathogenesis,isstillamatterofdebate,animalmodelsindicatethatitcouldplayaprimaryoradjuvantrole.Thisdoesnotnecessarilyimplythatitisthesolefactorcausingdisease,butthatbarrierdysfunctionmayexacerbateinflammationinthepresenceofothertriggersandcompromisemucosalhealingafterinflamma-tion[15].

1.1.Intestinalepithelialcelltypes,guthomeostasisandinflammation

Theintestinalbarrierconsistsofapolarizedandpermeablemonolayerofepithelialcells.Therearefourmajorintestinalepithe-lialcelltypes,whicharisefromthemulti-potentstemcellswithinthecrypt:(1)absorptiveenterocyteswhichmakeupmorethan80%ofallepithelialcells;(2)mucousandtrefoilfactorproducing

gobletcells;(3)hormoneproducingenteroendocrinecells;and(4)antimicrobialandgrowthfactorproducingPanethcells.

WiththeexceptionofPanethcells,allintestinalepithelialcelltypesarelocatedinthesmallandlargeintestineandundergocon-tinualrenewalevery3–5days[16].Panethcells,ontheotherhand,areprimarilylocatedatthebaseofsmallintestinalcryptandarerenewedapproximatelyevery18–23days[17].TheM(microfold)cells,characterizedbythelackofmicrovilli,overlaythePeyer’spatchesfoundinsmallintestineaswellasisolatedlymphoidfol-licles(ILF)inthesmallandlargeintestine.Underhomeostaticconditions,awiderangeofmicroorganismsandmacromoleculescangainentrythroughtheM-cellsensuringconstantsamplingbyimmunecells[18].

Thedevelopmentofknockoutmiceaswellastheabilitytoinvivoablatethedevelopmentofspecificintestinalcelllineageshavehighlightedtheroleofintestinalcelltypesinmainte-nanceofhealth.Murineatonalhomologue1(Atoh1orMath1)isanimportanttranscriptionfactorinvolvedindifferentiationofsecretoryintestinalepithelialcells.Math1nullmicelackgoblet,enteroendocrineandPanethcellsintheintestine[19].Inter-estingly,homozygousMath1knockoutmice(Math1−/−),butnotheterozygousmice,dieshortlyafterbirth[19].Math1isalsoessen-tialforthedevelopmentofcertainneuronalcelltypes[20].Thus,decreasedsurvivalofMath1−/−micecannotbesolelyattributedtothelossofsecretoryepithelialcellsintheintestine.Instead,ithasbeensuggestedthatrespiratoryfailureduetolossofbrain-stemneuronsunderlietheprematuredeathofMath1−/−mice[20].Theimportanceofsecretoryintestinalepithelialcells,however,hasbeenunderscoredinmicethatlacktheMath1geneinintestinalepithelialcells[20].TheseintestinalepithelialspecificMath1−/−micefailedtosurvivepast14daysofage.Itisunknownwhether

44J.M.M.Natividad,E.F.Verdu/PharmacologicalResearch69 (2013) 42–51

theintestinalmicrobiotainfluencesthesurvivalofmicelackingMath1.However,itispossiblethatthelackofsecretoryepithelialcells,suchasPanethcells,impairsantimicrobialdefenseleadingtoincreasedmorbidity.ItisunknownwhetherMath1−/−micecanthrivenormallywhenmaintainedundergerm-freeconditions.

AnessentialroleofPanethcellsinlimitingmucosalpene-trationofintestinalbacteriahavebeenunderlinedbystudiesshowingthatuponoralchallengewithpathogenicbacteria,Panethcell-deficienttransgenicmice(CR2-tox176)displayedincreasednumbersoflivebacteriainmesentericlymphnodes(MLN)com-paredtowild-typemice,suggesting[21,22].ThemechanismbywhichPanethcellslimitbacterialpenetrationmayinvolvecellactivationthroughpatternrecognitionreceptorsandsecretionofantimicrobials[22].

Ontheotherhand,theimportanceofgobletcellsinmaintenanceofhealthhavebeenemphasizedbyexperimentalobservationthatmicethatlackKruppel-likefactor4(Klf4)gene,atranscriptionfactornecessaryforterminaldifferentiationofgobletcells,dieshortlyafterbirth[23].Klf4−/−neonatalmicedisplayedgobletcellhypoplasiaandabnormalexpressionofMuc2.Thesemicealsodis-playedotherabnormalities,whichlikelycontributedtoincreasedmorbidityandmortality[23].Inagreementwiththis,micewithspecificintestine-epithelialdeletionofKlf4genewereviablebutstilldisplayedsignificantlowernumbersofgobletcellsandalteredintestinalepithelialhomeostasischaracterizedbydysregulatedcellproliferation,migration,differentiationandpositioningofintesti-nalepithelialcells[24].ItremainstobedeterminedwhetherthereducednumbersofgobletcellsinKlf4−/−micerendersthemsus-ceptibletointestinalinflammation.Incontrast,transgenicmiceinwhich60%ofgobletcellswereablatedbytheexpressionofanattenuateddiphtheriatoxingenedrivenbytheITFpromoterwereprotectedagainstexperimentalcolitis,andthisparadoxicalresulthasbeenattributedtotheincreasedproductionoftrefoilfactorpeptidesbyremaininggobletcells[25].

Thus,animalstudiesdemonstratekeyrolesofintestinalepithe-lialcelltypesinmaintenanceofbarrierpropertiesandhealth.However,redundancyexistsandtherearecompensatorymech-anismsthatdeveloptomaintainhomeostasisintheabsenceofaspecificintestinalepithelialcelllineage.

1.2.Intestinalbarrierarchitecture,guthomeostasisandinflammation

Theintegrityandstructureoftheepithelialcellislargelymod-ulatedbymicrotubulesandactin.Microtubulesplayacentralroleinmaintainingcellularintegrity,directingintracellulartransportandsecretion,andcoordinatingorganellemovements.Ontheotherhand,actinregulatesepithelialpermeabilitythroughinteractionswithapicaljunctionalproteins,whicharecomposedoftightjunc-tions,intermediateoradherensjunctions,desmosomesormaculaadherens,andgapjunctions(Fig.2)[26,27].Apicaljunctionalproteinsplayanimportantroleinthemaintenanceofepithelialpolarity.Bothadherensjunctionsanddesmosomesareresponsibleinbindingepithelialcellstogether.Adherensjunctionsalsohaveacrucialroleincellrenewalandarenecessaryforproperassemblyofthetightjunctions[28,27].

Paracellulartransportacrossthebarrieriscontrolledbyapi-caljunctionproteins,whichdynamicallyrespondtodifferentstimuliincludingpathogens,commensalbacteriaandbacterialproducts.Epithelialcellsallowasmallamountofluminalanti-genstopasstranscellularlyacrosstheepitheliumeitherthroughreceptor-mediatedendocytosisornon-selectivelyviafluid-phaseendocytosis.Thisprocessiscalledtranslocation.Asmalldegreeofbacterialmucosaltranslocationisnormalandcontributestothephysiologicalsamplingofluminalcontentbythehost’simmunesystem[29].However,whenthehostcannoteffectivelycontaingutbacteriatothemucosalcompartment,increasedimmuneacti-vationandinflammationmayoccur[5].

Animalmodelslackingspecificcomponentsofapicaljunc-tionalproteinshighlighttheimportanceofthesemoleculesinthemaintenanceofintestinalhomeostasis.Expressionofdomi-nantnegativeN-cadherininthemouseintestinalepitheliumledtospontaneousdevelopmentoftransmuralenteritis,similartoCrohn’sdisease[30].Also,micelackingintracellularmicrobialsensors,Nod1andNod2,displayeddecreasedcolonicE-cadherinexpression,paralleledbyincreasedparacellularpermeabilityanddecreasedantimicrobialproteinproduction[15].ThebarrierdefectinNod1−/−;Nod2−/−micewasinsufficienttocausespontaneousinflammation,howeveritincreasedsusceptibilitytosubsequent

Fig.2.Intestinalepithelialbarrierstructure.(A)Theintegrityandstructureofepithelialcellislargelymodulatedbythecytoskeleton.Withinthecell,twotypesofcytoskeletalproteinsarepresent:(1)␣-integrin,whichpolymerizestoformmicrotubules;(2)actinthatpolymerizestoformfilamentousactin.Actinfilamentsformadensecross-linkedactincortexattheapicalregionoftheepithelialcells,andplayaroleinregulatingepithelialpermeabilitythroughinteractionswithapicaljunctionalproteins.(B)Apicaljunctionalcomplexcomposedoftightjunctions,intermediateoradherensjunctions,desmosomesormaculaadherens,andgapjunctionsboundepithelialcellstogetherandmaintainepithelialpolarity.Adherensjunctioniscomposedofcadherins,suchasE-cadherin(alsocalledcadherin-1),andisboundtoalphaandbetacatenins.Moreover,adherensjunctionsarenecessaryforproperassemblyofthetightjunctions,whicharejunctionalproteinsthataremostapicallylocated.Thetightjunctionsarecomposedoftransmembraneproteinsoccludins,claudins,andjunctionaladhesionmolecule(JAM)thatarelinkedtotheactincytoskeletonthroughzonulaoccludens(ZO)proteins.

J.M.M.Natividad,E.F.Verdu/PharmacologicalResearch69 (2013) 42–51

45

acuteexperimentalcolitis[15].Similarly,micethatlackedJAM,oneofthecomponentsoftightjunction,didnotspontaneouslydevelopintestinalinflammation,butexpressedincreasedsensi-tivitytocolitis[31,32].Ontheotherhand,SAMP1/YitFcmice,whichexhibitedincreasedpermeabilityinileumandaberrantexpressionofthetightjunctionproteinsClaudin-2andoccludin,spontaneouslydevelopedileitissimilartoCrohn’sdisease[33–35].Whenraisedundergerm-freeconditions,SAMP1/YitFcmicestilldisplayedalteredilealpermeabilitysuggestingthatthebarrierphe-notypeisindependentofthepresenceofgutbacteria[36,37].Takentogether,thesestudiessuggestthatadenovodefectinbarrierintegritymaybeinsufficienttodisruptintestinalhomeostasisinawaythatleadstodiseasebutitmayincreasetheriskorseverityofinflammation,particularlyinthepresenceofothertriggers.Compromisedbarrierintegrityhasalsobeenobservedduringactiveinflammation[8,10,38].Theexactcontributionofbarrierdysfunctionatthisstageofdiseaseremainsuncertain.Inflamma-torymarkerssuchascytokinescandisruptpersebarrierintegrityandfunction[6,27].Adefectinbarrierfunctionduringactiveinflammationmaybeaconsequenceofdisease,andalthoughaninflammation-amplifyingrolecannotberuledout,aprimaryroleinthedevelopmentofinflammationisdifficulttoascertain.

1.3.Antimicrobialpeptides,guthomeostasisandinflammation

Epithelialcellssecreteawidevarietyofmolecules,whicharenaturalantibioticswithbroadantimicrobialactivity.Panethcells,primarilylocatedatthebaseofsmallintestinalcrypts,arethemainsourceofantimicrobialsintheintestine.About70%ofPanethcells’granulescontain␣-defensinsandtherestisamixtureoflysozymes,secretoryphospholipaseA2,C-typelectinssuchasRegIII-␥andRegIII-␤,calprotectinsandribonucleasessuchasangiogenin-4(Ang-4)[39].EnterocytesalsohavetheabilitytosecreteantimicrobialsincludingRegIII-␥,cathelicidins,smallamountsof␣-defensins,and␤-defensins[15,40].Antimicrobialsarepresentinboththesmallandlargeintestine,andcaneitherbeconstitutivelyexpressedorinducible(Table1).

Studiesinanimalshaverevealedthatepithelial-derivedantimi-crobialpeptidesareimportantinthepreventionandclearanceofintestinalpathogens.Thisisevidentinmicelackingcryptidins,whichisamurinecounterpartofhuman␣-defensins,andRegIII-␥proteins[41–44].Similarly,thecontributionof␣-defensinstohostdefenseagainstentericpathogenshasbeendemonstratedinastudyshowingthattransgenicmiceexpressinghuman␣-defensinHD5arefullyresistanttoorallethalinfectionwithSalmonellatyphimurium.Impaired␣-defensinexpressionmayleadtoareductionofantibacterialactivity,makingsusceptiblehostsmorevulnerabletointestinalbacterialinvasionandattachment.Indeed,antimicrobialpeptidesarestrategicallylocatedattheepithelialsurfacealongthemucuslayer[45].Theirlocationhints

totheirroleinkeepingintestinalbacteriaatbay,andinpreven-tingepithelialcellstressandimmuneactivation.IthasbeenshownthatalackofRegIII-␥wasassociatedwithanincreasednumberofbacteriainclosecontactwiththeepithelium[45].Increasedmicrobial–epithelialcontactinRegIII-␥−/−micewasparalleledwithheightenedadaptiveimmuneresponse,implyingthatalossofbacterialsegregationinducesunnecessaryimmuneactivation[45].ItispossiblethattheincreasedimmuneactivationinRegIII-␥−/−micereflectsacompensatorymechanismmountedbythehosttocompensateforthelackofRegIII-␥expression.Itremainstobedeterminedwhetherthisadaptationcouldcontributetodiseaseifoverwhelmed,particularlyinthepresenceofintestinalinjuryorinflammatorytriggers.

UsingtransgenicmicethatexpressHD5,ithasbeensuggestedthat␣-defensinmaybeinvolvedinpreventingmucosa-associatedbacteriasuchassegmentedfilamentousbacteria(SFB)tocolonizeincloseproximitywiththeepithelium,leadingtoTh17activation.HD5transgenicmice,however,stillexpressmousecryptidins.Asaresult,theobservationsfoundintheHD5transgenicmicemaynotnecessarilyreproducewhatishappeningunderphysiologicalconditions[46,47].Overall,antimicrobialpeptideslikelycontributetointestinalhomeostasisbyactingasnaturalhostantibioticsthatprotectthevulnerablemucosalsurfacefrommicrobialinvasionandpenetrationandinappropriateimmuneactivation.

Inadditiontoitsroleasnaturalhostantibiotics[48],antimi-crobialpeptideshaveimmuno-modulatoryproperties[49,50].Forinstance,cathelicidinhasbeenshowntomodulatemacrophagesinvitrointoananti-inflammatoryphenotype[51].Antimicrobialpeptidesmayalsobeessentialinregulatingintestinalmicrobiotacomposition[52].Inparticular,secretionofAng-4,whichpreferen-tiallytargetsgram-positivebacteriawhilesparinggram-negativebacteria,hasbeensuggestedtoshapethecompositionoftheintestinalmicrobiotaatthetimeofweaningwhentheproportionofgram-positivebacteriadecreaseandgram-negativeanaerobicorganismsbecomeestablished[48].Likewise,HD5mayalsoinflu-encethecompositionofgutmicrobiota[46,47].Altogether,thesestudieshighlighttheroleofepithelialderivedantimicrobialsasactiveinnateimmunemediatorsandregulatorsofintestinalmicro-biotacomposition.

Inbothanimalmodelsandclinicalstudies,antimicrobialpep-tidesseemtobeup-regulatedduringactiveinflammationoratthesiteofinflammation[53–56].Thismayreflectadefensemechanismagainstinvadingbacteriaduringmucosalbreaksorpermeabilityincreases.Ontheotherhand,increasedantimi-crobialpeptideproductionduringactiveinflammationcouldbepotentiallydetrimentalandaffectbeneficialbacteriawithanti-inflammatoryeffects[57].Thusfar,thebruntofevidencesupportstheconceptthatabalancedexpressionofantimicrobialpep-tidesiscrucialtomaintainintestinalhomeostasisandpreventinflammation.

Table1

Expressionpatternofepithelial-derivedantimicrobials.

Family

Members

Localization

Transcriptionallyinduced

␣-Defensins␣-Defensins␣-Defensins␣-Defensins␤-Defensin␤-Defensin␤-Defensin

␤-1,4-Glycosidase

Phospholipidsn-2enteraseC-typelectinC-typelectinRibonucleaseCathelicidins

HD-5(human)HD-6(human)

Cryptidins(mouse)

Cryptidinsrelatedpeptides(mouse)HBD-1(human)HBD-2(human)mBD-3(mouse)HBD-3(human)LysozymeCsPAL2

RegIII-␣orHIP/PAP(human)RegIII-␥(mouse)RegIII-␤(mouse)ANG-4

LL37(human)

Panethcells,smallintestinalandcolonicenterocytesPanethcells,smallintestinalandcolonicenterocytesPanethcellsPanethcells

ColonicenterocytesColonicenterocytesColonicenterocytesPanethcellsPanethcells

Panethcells,smallintestinalandcolonicenterocytesPanethcells,smallintestinalandcolonicenterocytesPanethcells

Panethcells,smallintestinalandcolonicenterocytes

NoNoNoNoNoYesYesNoNoYesYesYesNo

46

J.M.M.Natividad,E.F.Verdu/PharmacologicalResearch69 (2013) 42–51

Table2

Regionalexpressionofintestinalmucins.

MUCtype

Membranebound/secreted

LocalizationMUC1(human,mouse)MembraneboundLargeintestineMUC2(human,mouse)

Secreted

Smallandlargeintestine

MUC3A(human,mouse)

Membranebound/secreted

Smallandlargeintestine

MUC3BSmalland(human,mouse)

Membranebound/secreted

largeintestine

MUC4Small(human,mouse)MembraneboundintestineMUC11Smalland(human,mouse)

Membranebound

largeintestine

MUC12(human,mouse)Membranebound

LargeintestineMUC13(human,mouse)

Membranebound/secreted

Smallandlargeintestine

MUC15(human,mouse)

Membranebound

Smallandlargeintestine

MUC17(human,mouse)MembraneboundLargeintestineMU19(human,mouse)Secreted

LargeintestineMUC21(human,mouse)

Membranebound

Largeintestine

1.4.Mucuslayer,guthomeostasisandinflammation

Twomucuslayerscanbefoundwithintheintestine(Fig.1)[58].Theunstirred(inner)mucuslayer,isapproximately100␮mthick,isfirmlyadherent,richinepithelial-derivedantimicrobialsandmucin,andhaslowbacterialdensity.Thestirred(outer)mucuslayeriscomposedofmucinanddilutedantimicrobials,andsomebacteriaareabletopenetratethislayer.Mucinconstitutesavis-coelasticgelthatlinestheintestinalepithelialbarrier.Thethicknessandcompositionofthemucuslayervariesdependingontheloca-tionwithintheintestinaltract[59].Thehighestmucusviscosityisfoundinthedistalcolon[59].Interestingly,microbialdensityincreasesalongtheproximaltodistalpartsoftheintestinaltract,reachingupto1012bacteriapermlofluminalcontentinthecolon[60,61].Itisunclearwhethertheincreasedviscosityatthedistalcolonreflectsadefensemechanismofepithelialcellstoprotectagainstpotentiallyinvadingbacteria,orwhetheritisthedirectresultofhighermicrobialload.

Gobletcellsaretheprimarysourceofmucinsintheintes-tine.Thereare20differentmucinsthathavebeenidentified,andnineofthoseareexpressedbybothmurineandhumanintestineandareeithersecretedormembranebound(Table2).Mucinsaredividedintoneutralandacidicsubtypes.Acidicsubtypesarefurtherclassifiedassulfated(sulfomucins)ornonsulfated(sialomucins)groups.MUC(in)2isthepredominantmucinfoundinthelargeintestine.Interestingly,miceknockoutfortheMUC2genesponta-neouslydevelopcolitis[62].Ontheotherhand,micenullforMUC13genesdonotspontaneouslydevelopintestinalinflammationbuthaveshowntobemoresusceptibletoexperimentalcolitis[63].Incontrast,IL-10−/−micecrossedtohumanMUC1-transgenicmicedevelopmoreseverespontaneouscolitiswithahigherincidenceofcoloncancerdevelopmentascomparedtoIL-10−/−mice[].Thesestudieshighlightthatsubsetsofmucinshavedistinctfunc-tionsinthemaintenanceofintestinalhomeostasisandintheirroleindiseaseprogression.

Themucuslayerisalsocomposedofdiverseproteinssuchasglycoproteinsandpeptidesofthetrefoilfactorfamily(TFF).Thesepeptidesaresecretedbygobletcellsandenterocytesandhavebeenshowntoprotecttheepitheliumfromavarietyofinsults[65].MicelackingTFF3,onetypeofTFFpeptide,showedincreasedsuscepti-bilitytoexperimentalcolitis.TheunderlyingmechanismcouldberelatedtotheimpairedabilityofTFF3−/−micetohealthemucosaandpromoteregeneration.Therefore,TFFpeptidesareimportantinitiatorsofmucosalhealingcontributingtointestinalhomeostasis.

Theroleofthemucuslayerininfluencingintestinalmicrobiotacompositionhasnotyetbeenfullydefined,butitispossiblethat

differentialexpressionofmucinbothincompositionandlocationacrossthegastrointestinaltracthasaroleinintestinalcolonizationaswellasinshapingthecompositionofintestinalmicrobiota.

1.5.Microbialrecognition,guthomeostasisandinflammation

Intestinalepithelialcellsexpressawidevarietyofpatternrecog-nitionreceptorssuchasToll-likereceptors(TLR)andNOD-likereceptors.Expressionofthesereceptors,however,istightlycon-trolledtopreventinappropriateimmuneactivationwhilestillallowingconstantvigilance.Forexample,TLR5,whichrecognizeflagellin,hasbeenfoundtobeexclusivelyexpressedatthebasolat-eralsideofepithelialcellswhilesomeTLRssuchasTLR9andTLR7aswellasNOD-likereceptorsareintracellular,ensuringthatthesereceptorscanonlybeactivatedbyinvadingantigensormicroor-ganisms[66].Theimportanceofinnateimmuneactivationatthelevelofintestinalepitheliumishighlightedbythedevelopmentofspontaneousinflammationinspecificpathogenfree(SPF)micewithintestinalepithelialcelldeletionofthecomponentsoftheIKKcomplex,whichisadownstreamsignalingpathwayofbothPRRandupstreamkinaserequiredforNF-␬␤activation[67].Basalrecogni-tionofcommensalbacteriabyintestinalepithelialcellsinfluencesthesecretionoftheimmuno-regulatorycytokinessuchasTSLPandTGF-␤,whichhavetheabilitytodampenpro-inflammatoryresponses[66,68,69].Moreover,theanaerobiccommensalbac-teriumBacteroidesthetaiotaomicronhasbeenshowntoattenuateintestinalinflammation.Theanti-inflammatorycapabilityofB.thetaiotaomicronmaybeattributedtoitsabilitytoactivatePPAR-␥dependentpathwayinintestinalepithelialcells[70].Thisdatasug-gestthatactivationofPPAR-␥pathwayinintestinalepithelialcells,perhapsusingPPAR-␥agonist,maybebeneficialinamelioratingintestinalinflammation.

2.Regulationoftheintestinalbarrierbygutmicrobiota

Compositionalchangesinintestinalmicrobiota(dysbiosis)havebeenfoundinpatientswithceliacdisease,IBSandIBD[14].Ithasbeenproposedthatdysbiosismayplayaroleinthepathogenesisofthesediseases.Sofartheevidenceofaroleofdysbiosisingastroin-testinaldiseaseislimitedtoassociation.Itispossiblethatdysbiosiscontributestointestinalinflammationbydisturbingthesignalsthatmaintainbarrierfunction.Abetterunderstandingofhowtheintestinalmicrobiotamodulatetheseprocesseswillhelpdeveloptherapeutictargetstopreventortreatgastrointestinaldisease.

2.1.Microbialeffectsonintestinalepithelialcellrenewal

Abalancebetweencellproliferationandcelldeathisrequiredfornormalintestinalbarrierfunction.Anumberofstudiescompar-inggerm-freeandconventionallyraisedanimalshaveshownthatlackofintestinalmicrobiotagreatlyimpairsintestinalmorphology,architectureandcellrenewalproperties[3,2].Astrikingdifferencebetweenmicerearedundergerm-freeandconventionalconditionsisthatthetotalintestinalsurfaceareaissignificantlydecreasedintheabsenceofgutbacteria[71,72].Thisisparalleledbyaberrantintestinalmorphologywithshorterilealvilliandsmallerintesti-nalcryptsingerm-freemice[73].Moreover,therateofturnoverofilealandPeyer’spatchesingerm-freemicewasfoundtobelowerthaninmiceraisedinconventionalizedconditions[73].Eightdaysaftercolonization,cellrenewalrevertedtothesamedegreeasthatofconventionalmice[74].Decreasedcellrenewalmayhavedetri-mentalconsequencesonepithelialproliferationandregenerativeability.Indeed,germ-freemicehavebeenshowntobemoresus-ceptibletodextransulfatesodium(DSS)-colitis[75],underscoringthatintestinalbacteriaconferprotectionagainstintestinalinjurybyregulatingepithelialcellturnoverandrestitution.

J.M.M.Natividad,E.F.Verdu/PharmacologicalResearch69 (2013) 42–51

47

Theexactmolecularandcellularsignalingpathwaybywhichintestinalmicrobiotaregulatecellrenewalisstillunclear.However,indirectevidencesuggeststhatmicrobialassociatedmolecularpat-terns(MAMP)inducerelevantsignalsforbarrierfortification.MicelackingbacterialsensingsuchasToll-likereceptorsandNod-likereceptorsaremoresusceptibletocolitiscomparedtowild-typecontrols[15,76,77].Increasedsusceptibilitytocolitishasbeenasso-ciatedwithalteredcellrenewalandrestitution[76,77].Depletionofgutmicrobiotausingbroad-spectrumantibioticsinbothwild-typeandmicedeficientineitherNod2orMyD88,anadaptorproteinforTLRreceptors,didnotameliorateDSSinducedintestinalinjurybutratherpromotedmoreseveremorbidity[77,76].OralingestionofbacterialproductssuchasLPSormuramyldipeptide(MDP),aligandforNod2receptors,priororduringDSSchallenge,protectedwild-typemicethatreceivedoralantibioticsand/ormicelackinginnatebacterialsensors[77,78].Onelimitationinmostofthesestudiesisthefactthatmicrobialrecognitionisalsodefectiveinothercells,particularlyhematopoieticcells.Thus,thespecificcon-tributionofmicrobialrecognitionincolitisatthelevelofintestinalepitheliumisstillunclear.Nevertheless,thesestudiessuggestthatmicrobialsignalsareimportantforprotectionagainstintestinalinjury,likelythroughcellrenewalandpromotionofwoundheal-ing.IL-10−/−micespontaneouslydevelopintestinalinflammationinSPFconditions[79–82].Colitisonsethowever,isdelayedifIL-10−/−micearere-derivedgerm-free,highlightingthatintestinalbacteriaarenecessaryfortheinductionofintestinalinflammationinthismodel[79,82].

ArecentstudyhasindicatedthattheprobioticbacteriumLacto-bacillirhamnosusGGpromotescellrenewalandaugmentsmucosalrepairfollowingDSSinducedcolitisviareactiveoxygenspeciesgenerationinepithelialcells[83].Itishoweverunknownwhethercommensalbacteriadirectlyorindirectlysignaltotheepithelialcellstopromotecellrenewalandwoundhealing.Certaincom-ponentsofthemicrobiotagenerateavarietyofshortchainfattyacids(SCFA)suchasbutyrate,succinateandpropionate,whichhaveacrucialroleinregulatingcolonicepithelialcellgrowthanddifferentiationandareimportantenergysourcesforcolono-cytes[84].Overall,maintenanceofintestinalbarrierhomeostasisrequirescomplexinteractionsbetweenthemicrobiota,hostgenes,andotherenvironmentalfactorssuchasdiet.

2.2.Microbialeffectsonintestinalpermeability

Theabilityoftheintestinalmicrobiotatoaffectintestinalper-meabilityhasbeenmostlysupportedbytheuseofprobiotics,exogenouslyadministeredbacteriathatarethoughttohavebenefi-cialeffectsonthehost.Acuteorpsychologicalstressinducesbarrierdysfunctioncharacterizedbyincreasedmacromolecularfluxandchangesinionsecretion[85].OraladministrationofprobioticscontainingLactobacillusspp.preventedstress-inducedintestinalbarrierchanges[86].Somestudieshavereportedincreasedper-meabilityinDSScolitisaccompaniedbychangesinapicaljunctionexpressionandre-organization,beforetheappearanceofnotableinflammation,suggestingthatintestinalbarrierdysfunctionmayprecedetheonsetofcolitis[87,88].AdministrationofeitherEscherichiacoliNissle1917orL.rhamnosusduringDSScolitispreventedcolitis-associatedintestinalbarrierdysfunctioninmice[,90].TreatmentwithVSL#3,whichiscomposedofeightpro-bioticbacteria,protectedtheepithelialbarrierinmiceafterDSScolitisinduction[91].Theseeffectshavenotbeendescribedwithallprobioticbacteria,andwehaveshownthatadministrationofadefinedprobiotic,BifidobacteriumbreveNCC2950,didnotmodulatethealteredpermeabilityobservedinnaiveNod1−/−;Nod2−/−mice[15].Interestingly,B.brevewasabletopreventincreasedseverityofDSScolitis,butthemechanismofprotectionwasunrelatedtoacorrectionofthebaselinepermeabilitydefectobservedinthese

mice[15].Mostofthestudiesshowthattheeffectofprobioticsonintestinalpermeabilitycannotbeobservedincontrolanimals[15,91],suggestingthatprobioticsmaybemoreeffectiveforthepreventionofbarrierchangesandinflammation.

IthasbeensuggestedthatintestinalbarrierdysfunctionmayprecedetheonsetofspontaneousintestinalinflammationinmicedeficientforIL-10gene[81,82].TheprimarydefectinIL-10−/−micewasdependentonthepresenceofintestinalmicrobiotaasgerm-freeIL-10−/−micedidnotdisplayincreasedintestinalperme-ability[82].LactobacillushavebeenshowntobereducedinIL-10−/−mice[92].Specifically,administrationofLactobacillusreuteriduringneonatalperiodattenuatedthedevelopmentofcolonichistologi-calinjuryinIL-10−/−mice[92].Itis,however,unknownwhetherreducedinflammationwasaccompaniedbyimprovementinintestinalpermeability.AdministrationofLactobacillusplantarumwasshowntobeeffectiveinamelioratingtheincreasedcolonicpermeabilityandchangesintightjunctionalexpressionduringactivediseaseinIL-10−/−mice[81].Moreover,administrationofL.plantarumtogerm-freemicebeforecolonizationwithSPFandcon-tinuedprobiotictherapythereafterdecreasedhistologicalinjuryinIL-10−/−mice.Similarly,Mdr1a−/−mice,anotheranimalmodelofspontaneouscolitis,displayedintestinalbarrierdefectbeforetheonsetofhistologicalinjury[93].AdministrationofStreptococcusthermophilusandLactobacillusacidophiluspreventedincreasedper-meability,whichwasaccompaniedbygeneralimprovementinthehealthofmice[94].Overall,thesestudiesshowthatspecificbacte-riacanregulateofintestinalbarrierfunction,andthiscanpositivelyinfluencethedevelopmentofintestinalinflammation.Moreworkisneededonspecificmechanismsofactionbywhichthesespecificprobioticstrainsmodulatetheintestinalbarrier.

Componentsoftheresidentintestinalmicrobiotamayalsoinflu-enceintestinalbarrierfunction.ThisisevidentinarecentstudyshowingthatMyD88−/−;Ticam−/−mice,whichlackToll-likerecep-torssignaling,raisedingnotobioticenvironmentandcolonizedwithdefinedmicrobiotadonotdisplayalteredbarrierfunction[29].ThisobservationcontrastswithotherstudiesusingMyD88−/−micerearedandmaintainedunderSPFcondition[29,77,95].Itispossi-blethatmicecolonizedwithamicrobiotaoflimiteddiversity,lackorganismscapableofadverselymodulatingintestinalpermeability.ThemaintenanceofepithelialbarrierhasalsobeensuggestedtobeTLR2mediatedandassociatedwithrestorationandincreasedexpressionofZO-1[96,97].Mono-colonizationofgerm-freemicewithB.thetaiotaomicronmodulatedexpressionofgenesneces-saryforintestinalbarrierfortification[98].Thesechangesincludeup-regulationofsmallproline-richprotein-2,whichactsascross-bridgingproteinslinkedtodesmoplakin,acomponentoftheapicaljunctionalproteindesmosones(Fig.2)[98].Itisunclearwhetherandhowtheexpressionofmicrobialinducedbarrier-relatedgenestranslatesintoproteinexpressiontomodulateintestinalhomeo-stasis.Similarly,mono-colonizationofgerm-freewithE.coliNissle1917resultedinup-regulationofZO-1butnotZO-2inintesti-nalepithelialcells[90].TheincreasedexpressionofZO-1wasnotobservedingerm-freemicemono-colonizedwithotherstrainsofE.coli.SpecificprobioticsandothercommensalbacteriaareabletosecreteuniquemoleculessuchasSCFA,whichcanhavebeneficialeffectsontheintestinalbarrier[99–101].Lysatesoftheprobio-ticLactobacilluscaseiDN-114,butnotL.plantarum,amelioratedDSScolitisbypreventingtheincreaseinpermeabilityandpre-servingZO-1expressioninmice.Thesechanges,however,wereaccompaniedbyanincreaseinbutyrateproducingbacteria[102].Thus,itisunclearwhethertheimprovementinintestinalperme-abilityandepithelialintegritywasdirectlymediatedbythelysateorweresecondarytothechangeingutmicroenvironment.Never-theless,thedatacollectivelysuggestthatcertainbacterialspeciesproducemetabolitesthatcaninfluenceintestinalpermeabilityandintegrity.

48J.M.M.Natividad,E.F.Verdu/PharmacologicalResearch69 (2013) 42–51

Althoughthebruntofdatasuggestaroleofprobioticsinmod-ulatingbarrierfunctionandintegrity,moststudieshavefocusedonpreventativeeffectsbeforeadministrationofaninfectiousorinflammatorychallenge.Therearestillconsiderablegapsinknowledgeonthemechanismsbywhichprobioticsandothercom-mensalbacteriaaffectintestinalpermeability.Moreimportantly,informationislackingondosage,timingandformulationofexoge-nouslyadministeredmicroorganismstopreventandtreatdisease[103,104].

2.3.Microbialeffectsonantimicrobialproteinexpression

Antimicrobialproteinshaveadualroleinlimitingtheinva-sionofpathogensaswellasmodulatingtheintestinalmicrobiotacomposition.Certainsubsetsofintestinalepithelialcells-derivedantimicrobialproteinsareindependentandothersareinfluencedbythegutmicrobiota,emphasizingthebi-directionalinteractionbetweenintestinalmicrobiotaandintestinalbarrier.

GnotobioticstudieshaverevealedthatPanethcell-derivedantimicrobialssuchaslysozymeandsPLA2areexpressedundergerm-freeconditions.Similarly,cryptidinsareexpressedintheabsenceofgutmicrobiota,suggestingthatbaselineexpressionofthesemoleculesdonotrequiresignalsfromgutmicrobiota[105,106].However,cryptidin-relatedsequences(CRS)havebeenshowntobesignificantlyhigherinconventionallyraisedmicecomparedtomiceraisedingerm-freeconditionssuggestingthatgutmicrobiotamayinfluencethelevelofexpressionofcryptidins[106].Thus,itseemsthequantity,andquality,ofcryptidinscanbeaffectedbythemicrobiota.Expressionof␣-defensinsandcryp-tidinsissignificantlylowerinhumanneonatesandun-weanedmiceandrats,butincreasedramaticallyinadulthood[107–109].Duringthefirstfewyearsoflife,eachindividualundergoesatransitionalintestinalcolonization,characterizedbydynamicandrandomcolonizationwithadistinctivemicrobialcombination[110,111].Thecolonizationpatternsstabilizeintime,witheachindividualeventuallypossessingauniquefingerprintofdiverseintestinalmicrobiota[110,111].Theincreaseinexpressionof␣-defensinsoccursconcomitantlywithcolonizationanddevel-opmentofastablegutmicrobiota,implyingthatcomponentsofmicrobiotamayhavearoleintheregulationofintestinal␣-defensins[110–112].Itwillbeinterestingtoknowwhetherthe␣-defensinsfromneonateshavethesamebiologicalactivityasadult␣-defensins.Indeed,␣-defensinsarepost-translationallymodifiedintomaturedefensinsbymatrilysin(MAT)inmiceandtrypsininhumansuponsecretion[43,113].Interestingly,MATexpressionisundetectableingerm-freemice,implyingthatmicro-bialstimuliarerequiredforexpressionoffunctionalcryptidins[114].

Panethcell-derivedantimicrobials,including␣-defensins,arereleaseduponexposuretolivebacteriaandtheirantigens,suchaslipopolysaccharide(LPS)andmuramyldipeptide(MDP)[115].Incontrast,antimicrobialsecretionbyPanethcellsisnotinfluencedbyfungalorprotozoalsignals[115,116].Theexactsignalingpath-waythatleadstomicrobial␣-defensinexpressionisunclearbutclinicalandexperimentalevidencesuggeststhatinnatemicrobialsensors,particularlyNod2receptors,maybeinvolved[56,117,118].Likewise,microbialsignalingthroughNod2receptorsisessentialfortheexpressionofotherkindsofPanethcells’antimicrobials,namelyDefcr4andDefcr10[119,120].

Human␤-defensinisconstitutivelyexpressedincolonicepithe-lialcells.Mouse␤-defensin(mBD)1,mBD3,andmBD4havebeendetectedinthetongueandstomachofgerm-freemicebutfullcomparisonbetweenexpressionof␤-defensininotherpartsofintestinaltractbetweengerm-freeandconventionalmicehavenotyetbeenfullystudied[121].However,uponmono-colonizationofgerm-freemicewithCandidaalbicans,up-regulationofmBD1,

mBD3,andmBD4expressionhasbeenobserved.Expressionofhuman␤-defensin(hBD)2,butnothBD1,requiresbacterialorinflammatorystimuli[122–124].TheprobioticVSL#3,severalLac-tobacillusspecies,E.coliNissle1917andE.colistrainDSM17252(Symbioflor2)havebeenshowntoinduceexpressionandsecretionofhBD2inhumancolonicepithelialcelllines[125–128].Further-more,increasedfecallevelsofhBD2havebeenobservedinhealthyhumanswhoreceivedSymbioflor2twicedailyfor3weekscom-paredtoplacebotreatedindividuals[125].NF-␬␤pathwayandTLR2dependentsignalinghavebeenshowntobeinvolvedintheinductionofhBD2inepithelialcells[127,129].Similarly,bacterialflagellinderivedfromE.coliNissle1917wasshowntoinducehBD2.FlagellinisrecognizedbyTLR5,henceitispossiblethatthisreceptorplaysaroleintheinductionofhumanhBD2inintestinalepithelialcells.

ExpressionoftheantimicrobialribonucleasesAng-4andtheC-typelectinRegIII-␥andRegIII-␤issignificantlylowerorunde-tectableinthesmallintestineofgerm-freemicecomparedtoconventionallyraisedmice,inferringthattheirexpressionisunderthecontrolofthegutmicrobiota[22,130,131].Uponcolonizationofgerm-freemice,RegIII-␥expressionincreased[22,130,131].TheimportanceofmicrobialregulationofRegIIIproteinexpressionisalsosupportedbystudiesshowingthatmicelackingtheMyD88gene,butnotmicelackingNod2signaling,havesignificantlylowerRegIII-␥inthesmallintestinecomparedtocontrols[22].Spe-cificpathogen-freeNod1−/−;Nod2−/−micehavesignificantlylowerRegIII-␥expressioninthecoloncomparedtoheterozygotelitter-mates,suggestingthatNodreceptors,perhapsNod1,alsoinfluencecolonicRegIII-␥expression[15].TheprobioticB.breveNCC2950wasabletoup-regulateRegIII␥inNod1−/−;Nod2−/−mice.ItremainstobedeterminedwhetherB.breveisabletoup-regulateHIP/PAP,whichisthehumancounterpartofRegIII-␥.Mono-colonizationofgerm-freemicewithB.thetaiotaomicroninducedafive-foldincreaseinRegIII-␥expressionwhilemicecolonizedwithBifidibac-teriumlongumrepressedRegIII-␥expression[132].SuppressionofRegIII-␥byB.longum,however,wasreverteduponsimultaneouscolonizationofgerm-freemicewithbothB.longumandB.thetaio-taomicron[132].RegIII-␥hasbroadantimicrobialactivityagainstgram-positivebacteria.AsB.longumisagram-positivebacterium,itispossiblethatitsabilitytodown-regulateRegIII-␥mayrepre-sentitscopingmechanismtosurviveinthegut[132].Overall,thesestudiesindicatethatspecificbacteriahavetheabilitytodifferen-tiallyregulateantimicrobialexpression.

2.4.Microbialeffectsonmucuslayer

Germ-freemicehavelowernumbersofmucin-secretinggob-letcellsinthececumcomparedtoconventionallyraisedanimals[133].Moreover,germ-freemicedisplayedthinner,lessstableandcompactmucuslayercomparedtocolonizedanimals[71,134–139].ExposuretobacterialproductsLPSandpeptidoglycanincreasedthemucuslayerthicknessofgerm-freemicetothelevelsimilartoconventionallyraisedmice[136].Takentogether,thesefindingssuggestthatthecompositionofthegutendogenousmicrobiotamayregulatethemucuslayer.

AdministrationofVSL#3toratsinducedincreasedMUC2expressionandsecretion[140].AmongthebacteriainVSL#3,theexpressionseemedtobestronglymediatedbytheLactobacillibacteria[140].ItremainstobedeterminedtheexactmechanismbywhichLactobacilliinducedexpressionofmucin.Moreover,VSL#3up-regulatedtheexpressionandsecretionofMUC1,2and3inratbutnotinmice[140,141].Similarly,mucinexpressionorsecretionwasnotchangeduponinoculationofB.brevetomice,emphasiz-ingthedifferentialeffectsofprobioticsinregulatingmucuslayercomposition[15].

J.M.M.Natividad,E.F.Verdu/PharmacologicalResearch69 (2013) 42–51

49

Mucinsareessentialinpreventingluminalbacteriafromadher-ingorpenetratingtheintestinalepithelium.Thispropertyreliesonmucins’carbohydratecomponents.Comparisonbetweengerm-freeandconventionallyraisedanimalrevealedthatgerm-freemicehaveadifferentglycosylationprofile[142].Itisstilluncleartowhatextenttheresidentcommensalsengageinthecontrolofmucinglycosylation.ExposuretoLPSfromE.coliO55:B5stimu-latedthereleaseofmucinsingerm-freemice[143].Furthermore,mono-colonizationofgerm-freemicewithB.thetaiotaomicronstimulatedtheexpressionofcomponentsofmucuslayerincluding␣,2-fucosyltransferasemRNAandsynthesisoffucosylatedglyco-conjugatesonsmallintestinalepithelialcells[144].Theincreaseinmucinfucosylation,allowedB.thetaiotaomicrontobetterinter-actwithintestinalepithelialcells.Thus,thereseemstobeabi-directionalintestinalbarrier–microbiotainteraction,whichiscrucialforthemaintenanceofhealth.

3.Conclusion

Thecomplexcommunityofmicroorganismsresidingwithinthelumenoftheintestinaltracthasamutualisticrelationshipwiththehost.Disruptionofitscompositionandhost–microbialinterac-tionscanalterhostfunctionsandhasbeenproposedtocontributetoanumberofgastrointestinalandinflammatorydiseases.Itisnowrecognizedthatthemicrobiotainfluencesintestinalphysiol-ogy,includingtheintestinalbarrier,andthatthisrelationshipisbi-directional.However,thespecificmolecularandcellularmech-anismsremaintobedetermined.Understandingtheinteractionbetweenintestinalepithelialbarrierandgutmicrobiotawillbepivotalforthedevelopmentofnewprophylacticandtherapeuticagentsforchronicinflammation.Thesestrategiesmaybebasedontheuseofspecificbacterialspecieswithbarriermodulatingcapacitytopreventintestinalinflammation.Importantquestionsregardingmodeandtimeofdeliveryofpotentiallybeneficialbacte-ria,aswellastheinfluenceofhostgenotypeinthetherapeuticresponseachieved,needtobeaddressedinthefuture.

References

[1]HooperLV.Dosymbioticbacteriasubverthostimmunity.NatureReviews

Microbiology2009;7:367–74.

[2]SmithK,McCoyKD,MacphersonAJ.Useofaxenicanimalsinstudyingthe

adaptationofmammalstotheircommensalintestinalmicrobiota.SeminarsinImmunology2007;19:59–69.

[3]HooperLV,WongMH,ThelinA,HanssonL,FalkPG,GordonJI.Molecular

analysisofcommensalhost–microbialrelationshipsintheintestine.Science2001;291:881–4.

[4]BlumbergR,PowrieF.Microbiota,disease,andbacktohealth:ametastable

journey.ScienceTranslationalMedicine2012;4:137rv137.

[5]NatividadJM,HuangX,SlackE,JuryJ,SanzY,DavidC,etal.Host

responsestointestinalmicrobialantigensingluten-sensitivemice.PLoSOne2009;4:e72.

[6]MadaraJL,StaffordJ.Interferon-gammadirectlyaffectsbarrierfunctionof

culturedintestinalepithelialmonolayers.JournalofClinicalInvestigation19;83:724–7.

[7]TaylorCT,DzusAL,ColganSP.Autocrineregulationofepithelialpermeability

byhypoxia:roleforpolarizedreleaseoftumornecrosisfactoralpha.Gastro-enterology1998;114:657–68.

[8]WirtzS,NeufertC,WeigmannB,NeurathMF.Chemicallyinducedmouse

modelsofintestinalinflammation.NatureProtocols2007;2:541–6.

[9]JacobC,YangPC,DarmoulD,AmadesiS,SaitoT,CottrellGS,etal.Mast

celltryptasecontrolsparacellularpermeabilityoftheintestine.Roleofprotease-activatedreceptor2andbeta-arrestins.JournalofBiologicalChem-istry2005;280:31936–48.

[10]BerkesJ,ViswanathanVK,SavkovicSD,HechtG.Intestinalepithelial

responsestoentericpathogens:effectsonthetightjunctionbarrier,iontransport,andinflammation.Gut2003;52:439–51.

[11]SartorRB.Mechanismsofdisease:pathogenesisofCrohn’sdiseaseand

ulcerativecolitis.NatureClinicalPracticeGastroenterology&Hepatology2006;3:390–407.

[12]KalischukLD,InglisGD,BuretAG.Campylobacterjejuniinducestranscellular

translocationofcommensalbacteriavialipidrafts.GutPathogens2009;1:2.[13]HooperLV,GordonJI.Commensalhost–bacterialrelationshipsinthegut.

Science2001;292:1115–8.

[14]Cerf-BensussanN,Gaboriau-RouthiauV.Theimmunesystemandthegut

microbiota:friendsorfoes.NatureReviewsImmunology2010;10:735–44.[15]NatividadJM,PetitV,HuangX,dePalmaG,JuryJ,SanzY,etal.Commensal

andprobioticbacteriainfluenceintestinalbarrierfunctionandsusceptibil-itytocolitisinnod1(−/−);nod2(−/−)mice.InflammatoryBowelDiseases2012;18:1434–46.

[16]vanderFlierLG,CleversH.Stemcells,self-renewal,anddifferentiationinthe

intestinalepithelium.AnnualReviewofPhysiology2009;71:241–60.

[17]ChengH,LeblondCP.Origin,differentiationandrenewalofthefourmain

epithelialcelltypesinthemousesmallintestine.III.Entero-endocrinecells.AmericanJournalofAnatomy1974;141:503–19.

[18]KucharzikT,LugeringN,RautenbergK,LugeringA,SchmidtMA,StollR,etal.

Roleofmcellsinintestinalbarrierfunction.AnnalsoftheNewYorkAcademyofSciences2000;915:171–83.

[19]YangQ,BerminghamNA,FinegoldMJ,ZoghbiHY.Requirementofmath1

forsecretorycelllineagecommitmentinthemouseintestine.Science2001;294:2155–8.

[20]BerminghamNA,HassanBA,WangVY,FernandezM,BanfiS,BellenHJ,

etal.Proprioceptorpathwaydevelopmentisdependentonmath1.Neuron2001;30:411–22.

[21]GarabedianEM,RobertsLJ,McNevinMS,GordonJI.Examiningtheroleof

panethcellsinthesmallintestinebylineageablationintransgenicmice.JournalofBiologicalChemistry1997;272:23729–40.

[22]VaishnavaS,BehrendtCL,IsmailAS,EckmannL,HooperLV.Panethcells

directlysensegutcommensalsandmaintainhomeostasisattheintestinalhost–microbialinterface.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica2008;105:20858–63.

[23]KatzJP,PerreaultN,GoldsteinBG,ActmanL,McNallySR,SilbergDG,etal.

Lossofklf4inmicecausesalteredproliferationanddifferentiationandprecancerouschangesintheadultstomach.Gastroenterology2005;128:935–45.

[24]GhalebAM,McConnellBB,KaestnerKH,YangVW.Alteredintestinalepithelial

homeostasisinmicewithintestine-specificdeletionofthekruppel-likefactor4gene.DevelopmentalBiology2011;349:310–20.

[25]ItohH,BeckPL,InoueN,XavierR,PodolskyDK.Aparadoxicalreductionin

susceptibilitytocolonicinjuryupontargetedtransgenicablationofgobletcells.JournalofClinicalInvestigation1999;104:1539–47.

[26]MoosekerMS.Organization,chemistry,andassemblyofthecytoskeletal

apparatusoftheintestinalbrushborder.AnnualReviewofCellBiology1985;1:209–41.

[27]TurnerJR.Intestinalmucosalbarrierfunctioninhealthanddisease.Nature

ReviewsImmunology2009;9:799–809.

[28]SanchoE,BatlleE,CleversH.Signalingpathwaysinintestinaldevel-opmentandcancer.AnnualReviewofCellandDevelopmentalBiology2004;20:695–723.

[29]SlackE,HapfelmeierS,StecherB,VelykoredkoY,StoelM,Lawson

MA,etal.Innateandadaptiveimmunitycooperateflexiblytomaintainhost–microbiotamutualism.Science2009;325:617–20.

[30]HermistonML,GordonJI.Inflammatoryboweldiseaseandadenomasinmice

expressingadominantnegativen-cadherin.Science1995;270:1203–7.

[31]VetranoS,RescignoM,CeraMR,CorrealeC,RumioC,DoniA,etal.Unique

roleofjunctionaladhesionmolecule-ainmaintainingmucosalhomeostasisininflammatoryboweldisease.Gastroenterology2008;135:173–84.

[32]LaukoetterMG,NavaP,LeeWY,SeversonEA,CapaldoCT,BabbinBA,etal.Jam-aregulatespermeabilityandinflammationintheintestineinvivo.JournalofExperimentalMedicine2007;204:3067–76.

[33]KosiewiczMM,NastCC,KrishnanA,Rivera-NievesJ,MoskalukCA,Mat-sumotoS,etal.Th1-typeresponsesmediatespontaneousileitisinanovelmurinemodelofCrohn’sdisease.JournalofClinicalInvestigation2001;107:695–702.

[34]OlsonTS,ReuterBK,ScottKG,MorrisMA,WangXM,HancockLN,etal.The

primarydefectinexperimentalileitisoriginatesfromanonhematopoieticsource.JournalofExperimentalMedicine2006;203:541–52.

[35]VidrichA,BuzanJM,BarnesS,ReuterBK,SkaarK,IloC,etal.Alteredepithelial

celllineageallocationandglobalexpansionofthecryptepithelialstemcellpopulationareassociatedwithileitisinsamp1/yitfcmice.AmericanJournalofPathology2005;166:1055–67.

[36]BamiasG,OkazawaA,Rivera-NievesJ,ArseneauKO,DeLaRueSA,Pizarro

TT,etal.Commensalbacteriaexacerbateintestinalinflammationbutarenotessentialforthedevelopmentofmurineileitis.JournalofImmunology2007;178:1809–18.

[37]ReuterBK,PizarroTT.Mechanismsoftightjunctiondysregulationinthe

samp1/yitfcmodelofCrohn’sdisease-likeileitis.AnnalsoftheNewYorkAcademyofSciences2009;1165:301–7.

[38]SpillerRC,JenkinsD,ThornleyJP,HebdenJM,WrightT,SkinnerM,etal.

Increasedrectalmucosalenteroendocrinecells,Tlymphocytes,andincreasedgutpermeabilityfollowingacuteCampylobacterenteritisandinpost-dysentericirritablebowelsyndrome.Gut2000;47:804–11.

[39]MukherjeeS,PartchCL,LehotzkyRE,WhithamCV,ChuH,BevinsCL,etal.

Regulationofc-typelectinantimicrobialactivitybyaflexiblen-terminalprosegment.JournalofBiologicalChemistry2009;284:4881–8.

[40]LehrerRI.Primatedefensins.NatureReviewsMicrobiology2004;2:727–38.[41]BrandlK,PlitasG,SchnablB,DeMatteoRP,PamerEG.Myd88-mediated

signalsinducethebactericidallectinregiiigammaandprotectmiceagainstintestinalListeriamonocytogenesinfection.JournalofExperimentalMedicine2007;204:11–900.

50J.M.M.Natividad,E.F.Verdu/PharmacologicalResearch69 (2013) 42–51

[42]ZhengY,ValdezPA,DanilenkoDM,HuY,SaSM,GongQ,etal.Interleukin-22mediatesearlyhostdefenseagainstattachingandeffacingbacterialpathogens.NatureMedicine2008;14:282–9.

[43]WilsonCL,OuelletteAJ,SatchellDP,AyabeT,Lopez-BoadoYS,StratmanJL,

etal.Regulationofintestinalalpha-defensinactivationbythemetallopro-teinasematrilysinininnatehostdefense.Science1999;286:113–7.

[44]SalzmanNH,ChouMM,deJongH,LiuL,PorterEM,PatersonY.Enteric

salmonellainfectioninhibitspanethcellantimicrobialpeptideexpression.InfectionandImmunity2003;71:1109–15.

[45]VaishnavaS,YamamotoM,SeversonKM,RuhnKA,YuX,KorenO,etal.The

antibacteriallectinregiiigammapromotesthespatialsegregationofmicro-biotaandhostintheintestine.Science2011;334:255–8.

[46]SalzmanNH,HungK,HaribhaiD,ChuH,Karlsson-SjobergJ,AmirE,etal.

Entericdefensinsareessentialregulatorsofintestinalmicrobialecology.NatureImmunology2010;11:76–83.

[47]MenendezA,FerreiraRB,FinlayBB.Defensinskeepthepeacetoo.Nature

Immunology2010;11:49–50.

[48]HooperLV.Bacterialcontributionstomammaliangutdevelopment.Trends

inMicrobiology2004;12:129–34.

[49]BowdishDME,DavidsonDJ,HancockREW.Are-evaluationoftheroleofhost

defencepeptidesinmammalianimmunity.CurrentProtein&PeptideScience2005;6:35–51.

[50]SteinstraesserL,KraneburgU,JacobsenF,Al-BennaS.Hostdefensepep-tidesandtheirantimicrobial-immunomodulatoryduality.Immunobiology2011;216:322–33.

[51]BrownKL,PoonGF,BirkenheadD,PenaOM,FalsafiR,DahlgrenC,etal.

Hostdefensepeptidell-37selectivelyreducesproinflammatorymacrophageresponses.JournalofImmunology2011;186:5497–505.

[52]SalzmanNH,UnderwoodMA,BevinsCL.Panethcells,defensins,andthe

commensalmicrobiota:ahypothesisonintimateinterplayattheintestinalmucosa.SeminarsinImmunology2007;19:70–83.

[53]RahmanA,FahlgrenA,SundstedtC,HammarstromS,DanielssonA,

HammarstromML.Chroniccolitisinducesexpressionofbeta-defensinsinmurineintestinalepithelialcells.ClinicalandExperimentalImmunology2011;163:123–30.

[54]OgawaH,FukushimaK,NaitoH,FunayamaY,UnnoM,TakahashiK,

etal.Increasedexpressionofhip/papandregeneratinggeneiiiinhumaninflammatoryboweldiseaseandamurinebacterialreconstitutionmodel.InflammatoryBowelDiseases2003;9:162–70.

[55]WehkampJ,StangeEF.Paneth’sdisease.JournalofCrohnsandColitis

2010;4:523–31.

[56]WehkampJ,KoslowskiM,WangG,StangeEF.Barrierdysfunctiondueto

distinctdefensindeficienciesinsmallintestinalandcolonicCrohn’sdisease.MucosalImmunology2008;1:S67–74.

[57]SokolH,PigneurB,WatterlotL,LakhdariO,Bermudez-HumaranLG,Grata-douxJJ,etal.Faecalibacteriumprausnitziiisananti-inflammatorycommensalbacteriumidentifiedbygutmicrobiotaanalysisofCrohndiseasepatients.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica2008;105:16731–6.

[58]McGuckinMA,EriR,SimmsLA,FlorinTH,Radford-SmithG.Intestinalbarrier

dysfunctionininflammatoryboweldiseases.InflammatoryBowelDiseases2009;15:100–13.

[59]SwidsinskiA,SydoraBC,DoerffelY,Loening-BauckeV,VaneechoutteM,

LupickiM,etal.Viscositygradientwithinthemucuslayerdeterminesthemucosalbarrierfunctionandthespatialorganizationoftheintestinalmicro-biota.InflammatoryBowelDiseases2007;13:963–70.

[60]GarrettWS,GordonJI,GlimcherLH.Homeostasisandinflammationinthe

intestine.Cell2010;140:859–70.

[61]DethlefsenL,McFall-NgaiM,RelmanDA.Anecologicalandevolu-tionaryperspectiveonhuman–microbemutualismanddisease.Nature2007;449:811–8.

[62]VanderSluisM,DeKoningBA,DeBruijnAC,VelcichA,MeijerinkJP,

VanGoudoeverJB,etal.Muc2-deficientmicespontaneouslydevelopcoli-tis,indicatingthatmuc2iscriticalforcolonicprotection.Gastroenterology2006;131:117–29.

[63]ShengYH,LourieR,LindenSK,JefferyPL,RocheD,TranTV,etal.Themuc13

cell-surfacemucinprotectsagainstintestinalinflammationbyinhibitingepithelialcellapoptosis.Gut2011;60:1661–70.

[]BeattyPL,PlevySE,SepulvedaAR,FinnOJ.Cuttingedge:transgenicexpression

ofhumanmuc1inil-10−/−miceacceleratesinflammatoryboweldiseaseandprogressiontocoloncancer.JournalofImmunology2007;179:735–9.

[65]TaupinD,PodolskyDK.Trefoilfactors:initiatorsofmucosalhealing.Nature

ReviewsMolecularCellBiology2003;4:721–32.

[66]ArtisD.Epithelial-cellrecognitionofcommensalbacteriaandmainte-nanceofimmunehomeostasisinthegut.NatureReviewsImmunology2008;8:411–20.

[67]NenciA,BeckerC,WullaertA,GareusR,vanLooG,DaneseS,etal.Epithe-lialnemolinksinnateimmunitytochronicintestinalinflammation.Nature2007;446:557–61.

[68]TaylorBC,ZaphC,TroyAE,DuY,GuildKJ,ComeauMR,etal.Tslpregulates

intestinalimmunityandinflammationinmousemodelsofhelminthinfectionandcolitis.JournalofExperimentalMedicine2009;206:655–67.

[69]DignassAU,PodolskyDK.Cytokinemodulationofintestinalepithelialcell

restitution:centralroleoftransforminggrowthfactorbeta.Gastroenterology1993;105:1323–32.

[70]KellyD,CampbellJI,KingTP,GrantG,JanssonEA,CouttsAG,etal.

Commensalanaerobicgutbacteriaattenuateinflammationbyregulatingnuclear-cytoplasmicshuttlingofppar-gammaandrela.NatureImmunology2004;5:104–12.

[71]MeslinJC,FontaineN,AndrieuxC.Variationofmucindistributioninthe

ratintestine,caecumandcolon:effectofthebacterialflora.ComparativeBiochemistryandPhysiologyPartA:MolecularandIntegrativePhysiology1999;123:235–9.

[72]GordonHA,Bruckner-KardossE.Effectofnormalmicrobialfloraonintestinal

surfacearea.AmericanJournalofPhysiology1961;201:175–8.

[73]AbramsGD,BauerH,SprinzH.Influenceofthenormalfloraonmucosalmor-phologyandcellularrenewalintheileum.Acomparisonofgerm-freeandconventionalmice.LaboratoryInvestigation1963;12:355–.

[74]KhouryKA,FlochMH,HershT.Smallintestinalmucosalcellproliferationand

bacterialfloraintheconventionalizationofthegermfreemouse.JournalofExperimentalMedicine1969;130:659–70.

[75]MaslowskiKM,VieiraAT,NgA,KranichJ,SierroF,YuD,etal.Regulation

ofinflammatoryresponsesbygutmicrobiotaandchemoattractantreceptorgpr43.Nature2009;461:1282–6.

[76]ChenGY,ShawMH,RedondoG,NunezG.Theinnateimmunereceptor

nod1protectstheintestinefrominflammation-inducedtumorigenesis.Can-cerResearch2008;68:10060–7.

[77]Rakoff-NahoumS,PaglinoJ,Eslami-VarzanehF,EdbergS,MedzhitovR.Recog-nitionofcommensalmicroflorabytoll-likereceptorsisrequiredforintestinalhomeostasis.Cell2004;118:229–41.

[78]WatanabeT,AsanoN,MurrayPJ,OzatoK,TailorP,FussIJ,etal.Muramyl

dipeptideactivationofnucleotide-bindingoligomerizationdomain2pro-tectsmicefromexperimentalcolitis.JournalofClinicalInvestigation2008;118:545–59.

[79]SellonRK,TonkonogyS,SchultzM,DielemanLA,GrentherW,BalishE,etal.

Residententericbacteriaarenecessaryfordevelopmentofspontaneouscoli-tisandimmunesystemactivationininterleukin-10-deficientmice.InfectionandImmunity1998;66:5224–31.

[80]KuhnR,LohlerJ,RennickD,RajewskyK,MullerW.Interleukin-10-deficient

micedevelopchronicenterocolitis.Cell1993;75:263–74.

[81]ChenHQ,YangJ,ZhangM,ZhouYK,ShenTY,ChuZX,etal.Lactobacillus

plantarumamelioratescolonicepithelialbarrierdysfunctionbymodulatingtheapicaljunctionalcomplexandpept1inil-10knockoutmice.Ameri-canJournalofPhysiology:GastrointestinalandLiverPhysiology2010;299:G1287–97.

[82]MadsenKL,MalfairD,GrayD,DoyleJS,JewellLD,FedorakRN.Interleukin-10gene-deficientmicedevelopaprimaryintestinalpermeabilitydefectinresponsetoentericmicroflora.InflammatoryBowelDiseases1999;5:262–70.[83]SwansonPA,Kumar2ndA,SamarinS,Vijay-KumarM,KunduK,MurthyN,

etal.Entericcommensalbacteriapotentiateepithelialrestitutionviareactiveoxygenspecies-mediatedinactivationoffocaladhesionkinasephosphatases.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica2011;108:8803–8.

[84]O’KeefeSJ.Nutritionandcolonichealth:thecriticalroleofthemicrobiota.

CurrentOpinioninGastroenterology2008;24:51–8.

[85]GareauMG,JuryJ,MacQueenG,ShermanPM,PerdueMH.Probiotictreat-mentofratpupsnormalisescorticosteronereleaseandamelioratescolonicdysfunctioninducedbymaternalseparation.Gut2007;56:1522–8.

[86]ZareieM,Johnson-HenryK,JuryJ,YangPC,NganBY,McKayDM,etal.Probio-ticspreventbacterialtranslocationandimproveintestinalbarrierfunctioninratsfollowingchronicpsychologicalstress.Gut2006;55:1553–60.

[87]KitajimaS,TakumaS,MorimotoM.Changesincolonicmucosalpermeability

inmousecolitisinducedwithdextransulfatesodium.ExperimentalAnimals1999;48:137–43.

[88]PoritzLS,GarverKI,GreenC,FitzpatrickL,RuggieroF,KoltunWA.Lossofthe

tightjunctionproteinzo-1indextransulfatesodiuminducedcolitis.JournalofSurgicalResearch2007;140:12–9.

[]MennigenR,NolteK,RijckenE,UtechM,LoefflerB,SenningerN,etal.

Probioticmixturevsl#3protectstheepithelialbarrierbymaintainingtightjunctionproteinexpressionandpreventingapoptosisinamurinemodelofcolitis.AmericanJournalofPhysiology:GastrointestinalandLiverPhysiology2009;296:G1140–9.

[90]UkenaSN,SinghA,DringenbergU,EngelhardtR,SeidlerU,HansenW,etal.

ProbioticEscherichiacoliNissle1917inhibitsleakygutbyenhancingmucosalintegrity.PLoSOne2007;2:e1308.

[91]YuLC,WangJT,WeiSC,NiYH.Host-microbialinteractionsandregulationof

intestinalepithelialbarrierfunction:Fromphysiologytopathology.WorldJournalofGastrointestinalPathophysiology2012;3:27–43.

[92]MadsenKL,DoyleJS,JewellLD,TaverniniMM,FedorakRN.Lactobacillus

speciespreventscolitisininterleukin10gene-deficientmice.Gastroenter-ology1999;116:1107–14.

[93]Resta-LenertS,SmithamJ,BarrettKE.Epithelialdysfunctionassociated

withthedevelopmentofcolitisinconventionallyhousedmdr1a−/−mice.AmericanJournalofPhysiology:GastrointestinalandLiverPhysiology2005;2:G153–62.

[94]Resta-LenertSC,BarrettKE.Modulationofintestinalbarrierpropertiesbypro-biotics:roleinreversingcolitis.AnnalsoftheNewYorkAcademyofSciences2009;1165:175–82.

[95]GibsonDL,MaC,BergstromKS,HuangJT,ManC,VallanceBA.Myd88

signallingplaysacriticalroleinhostdefencebycontrollingpathogenburden

J.M.M.Natividad,E.F.Verdu/PharmacologicalResearch69 (2013) 42–51

51

andpromotingepithelialcellhomeostasisduringCitrobacterrodentium-inducedcolitis.CellularMicrobiology2008;10:618–31.

[96]

CarioE.Bacterialinteractionswithcellsoftheintestinalmucosa:Toll-likereceptorsandnod2.Gut2005;54:1182–93.

[97]

CarioE,GerkenG,PodolskyDK.Toll-likereceptor2enhanceszo-1-associatedintestinalepithelialbarrierintegrityviaproteinkinasec.Gastroenterology2004;127:224–38.

[98]

HooperLV,WongMH,ThelinA,HanssonL,FalkPG,GordonJI.Molecularanalysisofcommensalhost–microbialrelationshipsintheintestine.Science(NewYork,NY)2001;291:881–4.

[99]

PengL,LiZR,GreenRS,HolzmanIR,LinJ.Butyrateenhancestheintestinalbarrierbyfacilitatingtightjunctionassemblyviaactivationofamp-activatedproteinkinaseincaco-2cellmonolayers.JournalofNutrition2009;139:1619–25.

[100]

SegawaS,FujiyaM,KonishiH,UenoN,KobayashiN,ShigyoT,etal.Probiotic-derivedpolyphosphateenhancestheepithelialbarrierfunctionandmaintainsintestinalhomeostasisthroughintegrin-p38mapkpathway.PLoSOne2011;6:e23278.

[101]

SuzukiT,YoshidaS,HaraH.Physiologicalconcentrationsofshort-chainfattyacidsimmediatelysuppresscolonicepithelialpermeability.BritishJournalofNutrition2008;100:297–305.

[102]

ZakostelskaZ,KverkaM,KlimesovaK,RossmannP,MrazekJ,KopecnyJ,etal.LysateofprobioticLactobacilluscaseidn-114001amelioratescolitisbystrengtheningthegutbarrierfunctionandchangingthegutmicroenvi-ronment.PLoSOne2011;6:e27961.

[103]

ShanahanF,CollinsSM.Pharmabioticmanipulationofthemicrobiotaingas-trointestinaldisorders,fromrationaletoreality.GastroenterologyClinicsofNorthAmerica2010;39:721–6.

[104]

RolfeVE,FortunPJ,HawkeyCJ,Bath-HextallF.ProbioticsformaintenanceofremissioninCrohn’sdisease.CochraneDatabaseofSystematicReviews2006:CD004826.

[105]

AyabeT,WulffH,DarmoulD,CahalanMD,ChandyKG,OuelletteAJ.Modulationofmousepanethcellalpha-defensinsecretionbymikca1,aCa2+-activated,intermediateconductancepotassiumchannel.JournalofBiologicalChemistry2002;277:3793–800.

[106]

PutsepK,AxelssonLG,BomanA,MidtvedtT,NormarkS,BomanHG,etal.Germ-freeandcolonizedmicegeneratethesameproductsfromentericprodefensins.JournalofBiologicalChemistry2000;275:40478–82.

[107]

MallowEB,HarrisA,SalzmanN,RussellJP,DeBerardinisRJ,RuchelliE,etal.Humanentericdefensins.Genestructureanddevelopmentalexpression.JournalofBiologicalChemistry1996;271:4038–45.

[108]

OuelletteAJ,CordellB.Accumulationofabundantmessengerribonucleicacidsduringpostnataldevelopmentofmousesmallintestine.Gastroenter-ology1988;94:114–21.

[109]

OuelletteAJ,GrecoRM,JamesM,FrederickD,NaftilanJ,FallonJT.Developmentalregulationofcryptidin,acorticostatin/defensinprecursormrnainmousesmallintestinalcryptepithelium.JournalofCellBiology19;108:1687–95.

[110]

PalmerC,BikEM,DiGiulioDB,RelmanDA,BrownPO.Develop-mentofthehumaninfantintestinalmicrobiota.PLoSBiology2007;5:e177.

[111]

KurokawaK,ItohT,KuwaharaT,OshimaK,TohH,ToyodaA,etal.Compar-ativemetagenomicsrevealedcommonlyenrichedgenesetsinhumangutmicrobiomes.DNAResearch2007;14:169–81.

[112]

StarkPL,LeeA.Themicrobialecologyofthelargebowelofbreast-fedandformula-fedinfantsduringthefirstyearoflife.JournalofMedicalMicrobiol-ogy1982;15:1–203.

[113]

GhoshD,PorterE,ShenB,LeeSK,WilkD,DrazbaJ,etal.Panethcelltrypsinistheprocessingenzymeforhumandefensin-5.NatureImmunology2002;3:583–90.

[114]

Lopez-BoadoYS,WilsonCL,HooperLV,GordonJI,HultgrenSJ,ParksWC.Bac-terialexposureinducesandactivatesmatrilysininmucosalepithelialcells.JournalofCellBiology2000;148:1305–15.

[115]

AyabeT,SatchellDP,WilsonCL,ParksWC,SelstedME,OuelletteAJ.Secre-tionofmicrobicidalalpha-defensinsbyintestinalpanethcellsinresponsetobacteria.NatureImmunology2000;1:113–8.

[116]

MukherjeeS,VaishnavaS,HooperLV.Multi-layeredregulationofintesti-nalantimicrobialdefense.CellularandMolecularLifeSciences2008;65:3019–27.

[117]

Petnicki-OcwiejaT,HrncirT,LiuYJ,BiswasA,HudcovicT,Tlaskalova-HogenovaH,etal.Nod2isrequiredfortheregulationofcommensalmicrobiotaintheintestine.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica2009;106:15813–8.

[118]

KobayashiKS,ChamaillardM,OguraY,HenegariuO,InoharaN,NunezG,etal.Nod2-dependentregulationofinnateandadaptiveimmunityintheintestinaltract.Science2005;307:731–4.

[119]

KobayashiKS,ChamaillardM,OguraY,HenegariuO,InoharaN,NunezG,etal.Nod2-dependentregulationofinnateandadaptiveimmunityintheintestinaltract.Science(NewYork,NY)2005;307:731–4.

[120]EckmannL,KarinM.Nod2andCrohn’sdisease:lossorgainoffunction.

Immunity2005;22:661–7.

[121]SchofieldDA,WestwaterC,BalishE.Beta-defensinexpressionin

immunocompetentandimmunodeficientgerm-freeandCandidaalbicans-monoassociatedmice.JournalofInfectiousDiseases2004;190:1327–34.

[122]O’NeilDA,PorterEM,ElewautD,AndersonGM,EckmannL,GanzT,etal.

Expressionandregulationofthehumanbeta-defensinshbd-1andhbd-2inintestinalepithelium.JournalofImmunology1999;163:6718–24.

[123]EckmannL.Innateimmunityandmucosalbacterialinteractionsintheintes-tine.CurrentOpinioninGastroenterology2004;20:82–8.

[124]RamasundaraM,LeachST,LembergDA,DayAS.Defensinsandinflammation.

Theroleofdefensinsininflammatoryboweldisease.JournalofGastroenter-ologyandHepatology2009;24:202–8.

[125]MondelM,SchroederBO,ZimmermannK,HuberH,NudingS,BeisnerJ,etal.

ProbioticE.colitreatmentmediatesantimicrobialhumanbeta-defensinsyn-thesisandfecalexcretioninhumans.MucosalImmunology2009;2:166–72.

[126]SharpRR,AchkarJP,BrinichMA,FarrellRM.Helpingpatientsmakeinformed

choicesaboutprobiotics:aneedforresearch.AmericanJournalofGastroen-terology2009;104:809–13.

[127]WehkampJ,HarderJ,WehkampK,Wehkamp-vonMeissnerB,SchleeM,

EndersC,etal.Nf-kappab-andap-1-mediatedinductionofhumanbetadefensin-2inintestinalepithelialcellsbyEscherichiacolinissle1917:anoveleffectofaprobioticbacterium.InfectionandImmunity2004;72:5750–8.

[128]OhlandCL,MacnaughtonWK.Probioticbacteriaandintestinalepithelial

barrierfunction.AmericanJournalofPhysiology:GastrointestinalandLiverPhysiology2010;298:G807–19.

[129]ChungWO,DaleBA.Innateimmuneresponseoforalandforeskinkeratino-cytes:utilizationofdifferentsignalingpathwaysbyvariousbacterialspecies.InfectionandImmunity2004;72:352–8.

[130]CashHL,WhithamCV,BehrendtCL,HooperLV.Symbioticbacteriadirect

expressionofanintestinalbactericidallectin.Science(NewYork,NY)2006;313:1126–30.

[131]HooperLV,StappenbeckTS,HongCV,AngiogeninsGordonJI.Anewclass

ofmicrobicidalproteinsinvolvedininnateimmunity.NatureImmunology2003;4:269–73.

[132]SonnenburgJL,ChenCT,GordonJI.Genomicandmetabolicstudiesofthe

impactofprobioticsonamodelgutsymbiontandhost.PLoSBiology2006;4:e413.

[133]KandoriH,HirayamaK,TakedaM,DoiK.Histochemical,lectin-histochemical

andmorphometricalcharacteristicsofintestinalgobletcellsofgermfreeandconventionalmice.ExperimentalAnimals1996;45:155–60.

[134]SzentkutiL,RiedeselH,EnssML,GaertnerK,VonEngelhardtW.Pre-epithelial

mucuslayerinthecolonofconventionalandgerm-freerats.HistochemicalJournal1990;22:491–7.

[135]EnssML,Grosse-SiestrupH,Schmidt-WittigU,GartnerK.Changesincolonic

mucinsofgermfreeratsinresponsetotheintroductionofa“normal”ratmicrobialflora.Ratcolonicmucin.JournalofExperimentalAnimalScience1992;35:110–9.

[136]PeterssonJ,SchreiberO,HanssonGC,GendlerSJ,VelcichA,LundbergJO,etal.

Importanceandregulationofthecolonicmucusbarrierinamousemodelofcolitis.AmericanJournalofPhysiology:GastrointestinalandLiverPhysiology2011;300:G327–33.

[137]DePontiF,CosentinoM,D’AngeloL,LecchiniS,FrigoGM,CremaA.Importance

ofcholinergicpathwaysintheregulationofcolonicmotilityintherabbit.PharmacologicalResearch1990;22(Suppl.3):25–6.

[138]DeplanckeB,GaskinsHR.Microbialmodulationofinnatedefense:goblet

cellsandtheintestinalmucuslayer.AmericanJournalofClinicalNutrition2001;73:1131S–41S.

[139]ReymannA,BraunW,WoermannC.Responseofratsmallintestinalactive

aldohexosetransporttoelevationofmucosalcyclicampbyforskolinand3-isobutyl-1-methylxanthineinvitro.Naunyn-SchmiedebergsArchivesofPharmacology1985;331:384–92.

[140]Caballero-FrancoC,KellerK,DeSimoneC,ChadeeK.Thevsl#3probiotic

formulainducesmucingeneexpressionandsecretionincolonicepithelialcells.AmericanJournalofPhysiology:GastrointestinalandLiverPhysiology2007;292:G315–22.

[141]GaudierE,MichelC,SegainJP,CherbutC,HoeblerC.Thevsl#3probio-ticmixturemodifiesmicroflorabutdoesnothealchronicdextran-sodiumsulfate-inducedcolitisorreinforcethemucusbarrierinmice.JournalofNutrition2005;135:2753–61.

[142]ComelliEM,SimmeringR,FaureM,DonnicolaD,MansourianR,RochatF,etal.

Multifacetedtranscriptionalregulationofthemurineintestinalmucuslayerbyendogenousmicrobiota.Genomics2008;91:70–7.

[143]EnssML,MullerH,Schmidt-WittigU,KownatzkiR,CoenenM,HedrichHJ.

Effectsofperorallyappliedendotoxinoncolonicmucinsofgermfreerats.ScandinavianJournalofGastroenterology1996;31:868–74.

[144]NanthakumarNN,DaiD,NewburgDS,WalkerWA.Theroleofindigenous

microflorainthedevelopmentofmurineintestinalfucosyl-andsialyltrans-ferases.FASEBJournal2003;17:44–6.

因篇幅问题不能全部显示,请点此查看更多更全内容